
LEARNING
LOGO
ON THE APPLE JC

anne M°DOUGAIL
tony ADAMS

poate ADAMS

| GF Brand
55 River Road West
LANE COVE NSW 2066

LEARNING LOGO ON THE APPLE II

LEARNING
LOGO
on the

APPLE II

ANNE McDOUGALL
Faculty of Education, Monash University

TONY ADAMS
Department of Computing, Royal Melbourne Institute of Technology Ltd

PAULINE ADAMS
Binnak Park Kindergarten

A Prentice-Hall Direct Edition

©1982 by Prentice-Hall of Australia Pty Ltd

All rights reserved. No part of this book may be

revroduced in any form or by any means without

permission in writing from the publisher.

Prentice-Hall of Australia Pty Ltd, Sydney

Prentice-Hall International Inc., London

Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Ltd, New Delhi

Prentice-Hall of Japan Inc., Tokyo

Prentice-Hall of Southeast Asia Pte Ltd, Singapore
Editora Prentice-Hall da Brasil LTDA., Rio de Janeiro

Whitehall Books Ltd, Wellington

Prentice-Hall Inc., Englewood Cliffs, New Jersey

Printed in Australia by Globe Press Pty Ltd,

23 45 87 86 85 84 83

National Library of Australia

Cataloguing-in-Publication Data

McDougall, Anne, 1945- .

Learning LOGO on the Apple II

Bibliography.

Includes index.

ISBN 0 7248 0732 2

l. Apple computer - Programming.
2. LOGO (Computer program language).
I. Adams, Tony, 1944- . II. Adams, Pauline,

1944- , III. Title

001,64'24

MIT Logo language © MIT 1981
Apple Logo © Logo Computer Systems, Inc.

LOgo was initially developed in 1968 as part of a National Science

Foundation sponsored research project conducted at Bolt, Beranck &

Newman, Inc., in Cambridge, Massachusetts

Apple, Apple II and Apple Logo are registered trademarks of Apple

Computer, Inc.

For Christopher, Gareth, Kirsty and Rosalind

PREFACE

This book is intended to introduce the LOGO computer programming
language to computing novices.

LOGO is a programming language for students. The more advanced
parts of LOGO embody many of the challenging concepts of modern
computer science; however the language is so designed that the
beginner can also undertake many interesting and worthwhile
projects. Our intention in this book is not to provide a
complete description of LOGO, but to introduce its major features
at a simple non-technical level. For readers who wish to learn
more about the language, a bibliography is included in Appendix
H. :

The book uses both the versions of LOGO currently available for
the Apple II computer, MIT LOGO and Apple LOGO.

Many people have helped us in writing this book. We acknowledge
an intellectual debt to Seymour Papert, Harold Abelson, Cynthia
Solomon, Jim Howe, Mike Sharples, Sandra Wills and others
involved in research and development work with LOGO. Jim Howe's
comments on early drafts of some chapters have influenced our
methods of presentation throughout. David Squires, Sandra Wills,
Margaret Wilson, Gillian Barclay, Jeff Richardson and Kathy Webb
read later drafts and offered helpful criticism. Many of the
designs and projects in the book have been developed from the
LOGO work of Charles Nevile, Suzanne Milburn, Elizabeth Swann,
and Christopher and Gareth Adams. The photographs were taken by
Lee Adams. Technical support has been provided throughout our
LOGO work by Gordon Perkins. We would also like to acknowledge
the energy and patience of Chris Nicol and Wayne Cosshall in
editing and production of the book.

vii

We appreciate the forebearance of our families, friends,
colleagues and students, and especially Derek McDougall,
throughout the project. Finally we wish to note the reliability
of the Apple hardware, and the robustness of the Zardax word
processing system with which the book was written.

Anne McDougall
Tony Adams
Pauline Adams

viii

CONTENTS

BEFORE YOU BEGIN xii

1: STARTING UP THE TURTLE 1

Setting Up the System 1
Two Different LOGOs 2
Getting Started 2
The Keyboard 6
LOGO and Turtles 7
Drawing a Square 8
Correcting Typing Errors 9
Clearing the Screen 11
Drawing a Triangle 11
Making a Pattern 12
Bigger Squares and Triangles 14
The Turtle State 15
LOGO Modes 18
A Square in Immediate Mode 19
Drawing Rectangles 20
Error Messages in Immediate Mode 21
Ideas Introduced in this Chapter 23
Summary of Commands Introduced in this Chapter 24

2: EDITING AND DEBUGGING PROCEDURES 29

Polygons 25
Stopping Procedures 29

ix

Total Turtle Trip Theorem 29
Inputs to Procedures 30
A First Poly Procedure 32
Commands for Editing Procedures 34
Some Memory Aids 40
An Editing Exercise 40
Getting Ready to Draw a House 43
The Workspace 44
Drawing a House 45
Debugging 48
Procedures and Sub-procedures 31
Ideas Introduced in this Chapter 52
Summary of Commands Introduced in this Chapter 53

3: TURTLE PROJECTS 94

HIDETURTLE and SHOWTURTLE 54
Experimenting with Sides and Angles 39
Wrapping 56
Rotating Shapes 96
Typing More than One Procedure 62
Drawing a House without Lifting the Pen 63
A Cottage with Eaves 64
PENUP and PENDOWN 65
Going Home 66
Drawing a Clock 67
Drawing a Plane 68
Drawing a Stick Figure 69
Clearing the Screen without Moving the Turtle 72
Setting the Turtle’s Heading and Co-ordinates 73
More on Marching Men TS
A Hangman Project 75
Ideas Introduced in this Chapter 78
Summary of Commands Introduced in this Chapter 78

4: RECURSION AND MORE TURTLE PROJECTS 79

An Introduction to Recursion - Counting Backwards 79
A Recursive Spiral Procedure 81
Bigger Spirals 84
More on Screen Modes 84
More Recursive Procedures 85
Getting Round Circles 88
Growing Things 88
Stopping These Growing Things 89
Spinning Things 90
Spinning Circles Round and Round 93
Spinning Spiralling Things 96

Making Tunnels 97
Making Eyes 98
More About the STOP Command 99
Testing with the IF Command — 99
Creating Wallpaper Patterns 101
Spinning Windmills 105
Ideas Introduced in this Chapter 109

Summary of Commands Introduced in this Chapter 109

5: NAMING THINGS AND DOING ARITHMETIC 110

Working with Numbers 110
Printing Text 113
Naming Things 114
More About the MAKE Command 117
Printing on the Same Line 118
Getting Data into the Computer 118
Using Calculations in Procedures 120
A Doubling Procedure 121
Another Doubling Procedure 122
A LOGO Stopwatch 123
Using Random Numbers 125
Randomizing Random Numbers 126
Counting Heads and Tails 126
Standard Numeric Procedures 128
A Mathematical Project 131
A More Elaborate Triangle Calculation Procedure 132
Drawing Our Triangle 133
Ideas Introduced in this Chapter 140
Summary of Commands Introduced in this Chapter 141

6: RECURSION AND LISTS 142

Programming with Lists 142
Joining Lists Together 143
Joining More than Two Lists Together 144
Looking Into Lists 144
A More Recursive Procedure 148
Finding an Element of a List 151
An Alternative FIND Procedure 153
Building Lists 154
Exploring Words 156
Getting a Number from a List 158
Writing Procedures for Both Words and Lists 159
Local and Global Variables 160
Ideas Introduced in this Chapter 162
Summary of Commands Introduced in this Chapter 163

xi

7: SECRET CODES 164

Playing with the English Language 164
Printing a Sentence without Vowels 165
Understanding REMOVEVOWEL 166
Printing Sentences Backwards 168
Printing Spaces in a Line 169
Coding a Message 170
Setting Up the Codes 171
Coding SCRAMBLEWORD 172
Decoding the Message 174
Ideas Introduced in this Chapter 175

8: CREATING A COMPUTER POET 176

Making Sentences with LOGO 176
A More Refined Sentence Generator 179
An Even More Refined Sentence Generator 180
Using the WRITE Procedure to Write Poetry 182
Producing a Template 182
Extending the Dictionary 184
Ideas Introduced in this Chapter 186

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Index 245

Summary of Commands 187

Robot Turtles 201

More Turtle Geometry Projects 204

Using Color with LOGO 218

Toddler: A LOGO Microworld for Young Children 221

Managing the Workspace 227

Procedures Used in the Book 237

Bibliography 243

xii

BEFORE YOU BEGIN

LOGO is a computer language for solving problems, learning things,
doing projects, experimenting and playing.

The computer will do exactly what you command it to do. At times this
might not be quite what you expected it to do. Don't panic; you are
in charge. Unexpected results are a way of learning. Typing an
erroneous command might produce an error message from the computer; it
cannot damage the computer. Usually you just need to type the correct
command next, and you can forget the wrong one.

This book is written in such a way that at times you might be typing
into the computer commands that you only partly understand. It is
possible to use LOGO procedures without completely understanding their
details. In fact experimenting with these pre-written procedures is a
good way of learning just how they work.

The book is organized in the following way.

Chapters 1 and 2 provide the basie tools for using LOGO on the Apple
computer. In these chapters the emphasis is on doing things rather
than understanding; complete understanding will come later.

Chapters 3 and 4 are made up of LOGO projects using the tools
introduced in the first two chapters. Some new ideas are introduced,
but these chapters mainly develop and consolidate earlier material.

Chapter 5 is largely about mathematics. Sean this chapter; read it
more closely if you are interested in mathematics.

Chapter 6 is probably the most difficult; it introduces the concepts

xili

of text processing in LOGO. Even if you haven't completely understood
the material in Chapter 6, you will still be able to use the
procedures in Chapters 7 and 8 to manipulate English language text.

Each chapter is followed by a summary of ideas and LOGO commands
introduced in that chapter. At the end of the book, in Appendix A, is
a complete summary of LOGO commands introduced in the book,
for reference.

Appendix F discusses details of how to save procedures on a diskette,
and the use of a printer connected to the Apple. This Appendix might
best be read after Chapter 2.

xiv

] STARTING UP THE TURTLE

SETTING UP THE SYSTEM

You will need:
a 64K Apple Il computer,
a video monitor,
a disk drive,
a LOGO language diskette.

A printer interfaced to the computer and a spare blank diskette will
enable you to make printed copies of LOGO procedures and to save them
for later use.

TWO DIFFERENT LOGOS

Two different versions of LOGO are available for the Apple.

MIT LOGO was developed at the Massachusetts Institute of Technology.
This version is marketed by two companies; Terrapin Inc. of Boston,
and Krell of New York. As far as the definition of the LOGO language
is concerned, both of these are the same. When we refer to MIT LOGO
we will mean either of these.

APPLE LOGO is the version of LOGO developed by Logo Computer Systems
Inc. and marketed by Apple Computer Ine. as an official Apple product.
We will refer to this version as APPLE LOGO.

The MIT and Apple versions of LOGO are substantially the same, but
they have some differences. When we show only one program or command,
it will operate with both versions. When we show two programs or
statements side by side, the left hand one will be MIT LOGO and the
right hand one will be APPLE LOGO.

Remember if you have Terrapin or Krell LOGO that we refer to these as
MIT LOGO. If you have LOGO from Logo Computer Systems Inec., remember
that we refer to this as APPLE LOGO.

GETTING STARTED

Full details about the use of the Apple computer are provided in
operating manuals. We will cover just what you need to use LOGO.

The computer and the video monitor must both be plugged into power
points, and the power switched on. Don't switch the computer itself
on yet. Insert the LOGO language diskette into the disk drive as
shown in the photograph. Make sure the diskette label is facing
upwards, and the diskette has the orientation shown. Remember to
close the door of the disk drive.

Switch on the monitor and the computer. The computer's on/off switch
is at the back on the left hand side.

You will have to wait a few moments while the disk drive hums and the
LOGO program is loaded into the computer. During this time, if you
are using APPLE LOGO the following message will appear:

PRESS THE RETURN KEY TO BEGIN

With this there will be a message telling you to insert your own
diskette. Ignore these messages; just press the RETURN key. The disk
drive will hum some more.

Copyright messages will appear during the loading time in both MIT and
APPLE LOGO. When loading is complete the following message will
appear:

WELCOME TO LOGO
?

If this sequence of steps has not proceeded as described, you should
start again. Check particularly that everything is switched on. If
the LOGO program will still not load, you should consult someone who
is familiar with the Apple computer.

The question mark at the left of the screen is called a prompt. It
indicates that the LOGO system is ready for you to type a command.

—4—

Next to the ? you will see a flashing square. This is called the
cursor. It can move across the screen to indicate which position the
character to be typed will occupy. When the ? and cursor appear
together at the beginning of a line, the computer is ready for you to
type a new command.

Once the LOGO language is loaded into the computer, the LOGO diskette
should be removed and returned to its packet. It should be stored
away from magnetic fields and dust, so do not leave it lying on the
monitor or the disk drive, or where it is exposed to dust.

THE KEYBOARD

You will notice that the keyboard resembles the keyboard of a
typewriter. There are some additional keys; these will be described
when they are needed later.

Unlike a typewriter, on the computer keyboard the SHIFT key is not
needed for typing upper case letters. However it is needed to type
special characters such as ", +, = and so on.

The Space Bar:

Note that the space bar is nearest to you. Spaces in LOGO commands
are very important. Until you understand the language well, take care
to type spaces exactly as they are indicated.

The RETURN Key:

The RETURN key is located on the right of the keyboard. As you type
each command, the command will appear on the sereen. However it is
not actually sent to the computer tntil you press the RETURN key, so
you MUST do this at the end of EACH command.

-—§—

LOGO AND TURTLES

The LOGO programming language can be used to command a robot, called a
turtle. The commands are movement instructions, such as go FORWARD
(abbreviated FD) and turn LEFT (abbreviated LT). The turtle can leave
a trail as it moves, and so produce drawings. Turtles come in various
kinds.

A robot turtle is a robot on wheels (see the photograph below). It
has a felt-tip pen underneath. It moves about on a large piece of
paper on the floor, and can draw its path as it goes. A robot turtle
usually has as well a pair of little lamps (near the front, positioned
like eyes), a small speaker which can produce a tooting sound, and
touch sensors around its rim.

Another kind of turtle is the sereen turtle, which moves about the
screen of a computer. Like the robot turtle, it can draw its path as
it moves, though it moves much more quickly than a robot turtle can.

Now let us see what the sereen turtle can do.

DRAWING A SQUARE

We are going to prepare a procedure for drawing a square.

Before we write any new procedure we must give it a title. The title
ean be any word or letter, but it is a good idea to use descriptive
titles as these are easier to remember. Different procedures must
have different titles. We shall call our square-drawing procedure SQ.
Type

TO SQ

this stands for
TO draw a SQuare

Remember to leave spaces where we have left spaces (for example,
between TO and SQ). Remember also to press RETURN at the end of the
command.

The next statement to type is REPEAT 4 [FD 50 LT 90] but don't start
it without reading the steps below.

1. Type REPEAT 4 (don't use the REPT key, and don't press
RETURN yet).

2. Type a space after the 4.

3. Now you need a square bracket. Square brackets do not appear
on the keyboard. To type a [you need to hold down the SHIFT key
and press N.

4. Type FD 50 LT 90 (don't forget the spaces; be sure to use
the numeral 0 and not the letter O).

--8—

9. To type a] hold down the SHIFT key and press M.

6. Press RETURN.

On the next line type

END

and press RETURN.

The following should be on the screen:

TO SQ
REPEAT 4 [FD 50 LT 90]
END

CORRECTING TYPING ERRORS

If you notice a typing mistake in a command before you have pressed
RETURN, you can delete the incorrect characters. To delete the
character to the left of the cursor you should press the key indicated
below. Continue to press the key until the error is deleted and then
re-type the correct characters.

(ant L060 APPLE LOGO

The ESC key <— (left arrow key)

If you notice an error after RETURN has been pressed, type CTRL-G by
holding down the CTRL key and pressing G. Then start again from the
beginning of the procedure.

Correct any mistakes and proceed.

If you are using MIT LOGO, you must now type CTRL-C, by holding down
the CTRL key and pressing C.

You have now given the computer a sequence of instructions it will

obey when you type SQ. This is called a procedure. On the screen will
appear

SQ DEFINED
?

Next to the ? type

SQ

and press the RETURN key. Now the procedure will be used (or
executed) and the turtle should draw a square with side length of 50
turtle steps. The following should appear on the screen:

|
The square might be slightly distorted or flattened, as in the
illustration above. The amount of flattening depends on the monitor
screen you are using. A way of fixing this is shown in Chapter 4.
Note the position of the turtle after SQ is finished. It is in the
centre of the screen (called the home position) facing up.

If the turtle didn't draw a square for you, you can probably now see a
message on your screen which says something like

APPLE LOGO i ;
THERE IS NO PROCEDURE NAMED FD50- I DON'T KNOW HOW TO FD50

A typing error must have slipped through unnoticed. Type the
following:

APPLE LOGO & th

ERASE SQ ERASE "SQ

and press RETURN. Although the screen is not cleared, the procedure
SQ is erased from the computer's memory.

Now type the procedure from the beginning again. (Later we will show
you how to correct procedures without completely re-typing them.)

—10—

CLEARING THE SCREEN

Before you make further drawings you will probably want to clear the
sereen and return the turtle to the centre. The command which gets
things ready for a new drawing is

Ctr 10c0 \ APPLE LOGO

DRAW CLEARSCREEN (abbreviated CS)

Type this command now. Remember to press the RETURN key.

Now type

SQ

(Did you remember RETURN?) The turtle should draw the square

again.

Clear the sereen by typing the appropriate command.

DRAWING A TRIANGLE

Let's make a triangle-drawing procedure. Type

TO TR
REPEAT 3 [FD 50 LT 120]
END

Use SHIFT-N and SHIFT-M for the square brackets. Remember to press
RETURN at the end of each command.

If you are using MIT LOGO don't forget to press CTRL-C after END.

When the following appears

TR DEFINED
9

type

TR

—11—

and watch your triangle come to life. The computer should respond

hth

Notice again the flattening effect which makes the vertical side of
the triangle appear slightly shorter than the other sides. If an
error message appears, erase the TR procedure in the way you were
shown earlier, and type it again.

MAKING A PATTERN

Don't clear the screen. Leave the triangle there and type SQ. The
computer should respond

7
sat

Let's turn the turtle and make another square with a triangle inside
it. Type (without clearing the screen first)

LT 90

SQ
TR

AO an al en O0 mn ew 00 OO a mem ar ae 00 wh tm me

we

z

V
You might like to do this again. Type

The computer should show

How many times can you do this before you are drawing entirely over
old lines? Try it once more.

LT 90

SQ
TR

—13—

If your drawings go much below the centre of the screen, they will
disappear into the text that appears at the bottom. Typing

FULLSCREEN

causes the text to disappear so the full screen can be used for
drawing.

To get the text back, type

SPLITSCREEN

You can use these two commands at any time while a drawing is on the
screen.

BIGGER SQUARES AND TRIANGLES

You could write new procedures changing the size of the square and the
triangle.

For a bigger square, type

TO SqQi
REPEAT 4 [FD 100 LT 90]
END

(If you are using MIT LOGO remember to press CTRL-C afterwards.) Then

type

SsQl

—14—

The computer should respond

 is

Now make a bigger triangle by typing

TO TR1
REPEAT 3 [FD 100 LT 120]
END

Type

TRI

The computer should respond

EXERCISE

1.1 Draw more squares and triangles of different sizes.

THE TURTLE STATE

We have written some procedures and seen how they work. Now we will

—15—

go back and look at the individual commands that make up these
procedures. Later we will see how these commands can be used by
themselves outside procedures.

What is important about a turtle is its state. A turtle's state is
determined by two things: its position (i.e. where it is), and its
heading (i.e. the direction in which it is facing).

You can change the state of a turtle by changing either its position
or its heading, or both. Its position is changed by LOGO commands
such as FORWARD. Clear the screen and type

FORWARD 50 (abbreviated FD 50)

p
a
r
e
n
c
e
c
o
s
c
e
t
s
n
a
e
e
s
c
g
a
e
s
3

v
e
c
o
c
u
n
c
t

E
i

This causes the turtle to move forward 50 turtle steps (turtle steps
are quite tiny) Or type

BACK 35 (abbreviated BK 35)

He
,

B
B
A
”

e
s
t
s

b
n

This causes it to move backward 35 turtle steps. Notice the position
of the turtle.

The turtle's heading can be changed using LOGO commands such as LEFT
and RIGHT.

—16—

Now clear the screen and type

FD 50

LEFT 30 (abbreviated LT 30)

This causes the turtle to turn to its left on the spot, through an
angle of 30 degrees (if you are not sure about degrees, see below).
Now clear the screen and type

FD 50

RIGHT 90 (abbreviated RT 90)

3

This causes it to turn to its right through an angle of 90 degrees.

Degrees are used to measure angles or the amount of turning. Imagine
yourself standing up, still facing the computer, and then turning
right around once to face the computer again. You would turn through,
or change your heading by, 360 degrees in making such a turn. Turning
yourself - or the turtle - half way round, to face the direction
opposite to where you started, would be changing the heading by 180
degrees. A quarter turn is 90 degrees, and so on.

EXERCISE

1.2 Clear the sereen, and try drawing a square using the BACK
(abbreviated BK) and RIGHT (abbreviated RT) commands.

—17—

LOGO MODES

We have written some procedures and seen how they work. Let us now
examine the two modes in which LOGO operates.

When the ? appears on the screen, we are in immediate mode. We can
type commands such as FD and BK and they will be executed immediately.

Clear the screen and type

REPEAT 4 [FD 50 RT 90]

Press RETURN, and this should be executed straight away. The computer

should respond

| |

Now type

TO SQ2

and press RETURN. The TO command is executed immediately. As a
result, the computer leaves the immediate mode of operation and enters
the defining mode. In the defining mode, you can type commands and
they are not executed immediately. Note also that the question mark
prompt is no longer there. Type

REPEAT 4 [FD 50 RT 90]

The REPEAT command is not executed. Now type

END

If you are using MIT LOGO press CTRL-C. The following should appear
on the screen.

SQ2 DEFINED
9

You have left the defining mode and returned to immediate mode.

—-18—

Notice the ? is back again. If you type

SQ2 (don't forget RETURN)

the commands within SQ2 will be executed immediately, and the computer
should respond

dh

Remember when you use the TO command you enter a mode where you define
a procedure for later use.

A SQUARE IN IMMEDIATE MODE

We can draw a square step by step in immediate mode, and watch the
turtle turn and move as we type the commands. Type the following set
of commands. Remember to press RETURN after each command, and clear
the sereen before you start.

—19—

(This square is larger than our first square and is drawn in the
opposite direction.)

DRAWING RECTANGLES

Clear the screen and type the following set of commands.

FD 40
LT 90
FD 80
LT 90
FD 40
LT 90
FD 80
LT 90

e

This rectangle is wide but not very high. Clear the sereen and draw
another which is high and narrow.

—20—

 deh _

EXERCISES

1.3 Draw some more rectangles. What is the width (in turtle
steps) of the thinnest rectangle you can draw?

1.4 Experiment with very long rectangles. What happens when a
rectangle is too long to fit on the screen?

ERROR MESSAGES IN IMMEDIATE MODE

What will happen if you make a mistake while working in immediate
mode? In case you haven't found out already, type

FD50 (with no space between
FD and 50)

Then press RETURN. You should see an error message on the screen:

(wit L060. APPLE LOGO
THERE IS NO PROCEDURE NAMED FD50-_ I DON'T KNOW HOW TO FD50

The incorrect command cannot be used by the computer, and is not
recorded. All you have to do is re-type the command correctly and
press RETURN. In fact this is generally how mistakes should be
handled; once they are indicated, retype the command correctly and
proceed.

—21—

EXERCISES

1.5 Draw an equilateral (equal-sided) triangle with a horizontal

base. Hint: you will need to type another command before the
triangle-drawing command.

1.6 Use FD, BK, RT and LT to draw equilateral triangles of
different sizes.

1.7 Draw three equilateral triangles arrayed around the turtle's
central position, like this:

Hint: turn the turtle 120 degrees after each of the triangles.

1.8 Use the FD and LT commands to explore the size of the screen.
What happens when you command the turtle to go beyond the edge of
the sereen?

1.9 Draw a hexagon made up of six equilateral triangles, like
this:

—22—

Hint: if 120 degrees gave 3 triangles in Exercise 1.7, what angle
should give 6?

1.10 Spin some squares about the central position to make an
interesting design, like these examples:

KTS Oe)
“Ne

\/

a

IDEAS INTRODUCED IN THIS CHAPTER

Use of the Apple computer.

Dealing with typing errors.

Drawing simple shapes.

Defining procedures.

Turtle state: position and heading.

Immediate mode and defining mode.

—23—

SUMMARY OF COMMANDS INTRODUCED IN THIS CHAPTER

MIT LOGO

ESC key

TO title

DRAW

REPEAT

FORWARD, FD

BACK, BK

LEFT, LT

RIGHT, RT

ERASE title

END

CTRL-C

SPLITSCREEN

FULLSCREEN

CTRL-G

APPLE LOGO

left arrow key

TO title

CLEARSCREEN, CS

REPEAT

FORWARD, FD

BACK, BK

LEFT, LT

RIGHT, RT

ERASE "title

END

END

SPLITSCREEN

FULLSCREEN

CTRL-G

—24—

DESCRIPTION

delete character

to left

define new procedure

clear the sereen and
place the turtle at

home

repeat commands

move the turtle
forward

move the turtle back

turn the turtle left

turn the turtle right

erase procedure

last line of
procedure

define new procedure

mixed text and
drawings

full sereen for
drawings

stops current
procedure

EDITING AND DEBUGGING
PROCEDURES

POLYGONS

We have written procedures to draw squares and triangles. Now let's
try some other shapes. The following commands can be used to draw
regular (equal-sided) shapes with more than four sides. Type them,
one at a time, and study the shape each draws. Look for patterns in
the commands.

First draw a pentagon

REPEAT 5 [FD 40 LT 72]

The computer should respond

a
if

< |
Meee

This command has been written in immediate mode, and is used as soon

—25—

as you press RETURN. If you write it again as a procedure, you can
use it as many times as you like without re-typing it.

Type

TO PG
REPEAT 5 [FD 40 LT 72]
END

(Don't forget CTRL-C in MIT LOGO).

Clear the sereen before each of the following drawings.
Type

PG

and the pentagon should be drawn.

Next try a hexagon.

REPEAT 6 [FD 40 LT 60]

Now draw a heptagon.

REPEAT 7 [FD 40 LT 51.43]

Try drawing an octagon.

REPEAT 8 [FD 40 LT 45]

Have you remembered to clear the screen, or are you drawing one over
the other? Will a nonagon be bigger or smaller than an octagon? Try
it.

REPEAT 9 [FD 40 LT 40]

—27—

(a,
Now you can draw a decagon.

REPEAT 10 [FD 40 LT 36]

Finally, imagine a regular 360-sided shape, and draw that in immediate
mode by typing

REPEAT 360 [FD 1 LT 1]

—23—

This last drawing looks almost like a circle. It is in fact distorted
by the screen to make an oval shape. We will discuss how to overcome
this distortion effect in Chapter 4.

STOPPING PROCEDURES

If you are using a procedure that is going on and on, and you wish to
stop it, press CTRL-G.

EXERCISES

2.1 Write procedures to draw the following regular polygons: a
hexagon, a heptagon, an octagon, a nonagon, a decagon and a
circle. You can give these any titles you wish; make them easy
to remember.

THE TOTAL TURTLE TRIP THEOREM

If you look closely, you will see a pattern in these commands. The
product of the repeat number and the angle is always 360.

—29—

SHAPE

Triangle
Square
Pentagon

Hexagan
Heptagon
Octagon
Nonagon
Decagon
Circle

REPEAT DEGREES PRODUCT

3 120 3 x 120
4 90 4x 90
9 72 29 xX 72
6 60 6 x 60
7 91.43 7x 91.43
8 45 8 x 45
9 40 9x 40

10 36 10 x 36
360 1 360 x 1

For the turtle to go all the way around and finish with the same
heading as it began with, it must turn through 360 degrees, or a
multiple of 360, e.g. 720.
it draws.

This is called the Total Turtle Trip Theorem.
the turtle draws a figure and starts and ends in the same position,

360
360
360
360
360
360
360
360
360

This is regardless of the number of sides

and is pointing in the same direction as when it started, it has
turned through 360 degrees.

We can say that when

If we look at each figure, we will see that the number of sides to be
drawn in each ease is 360 divided by the angle.

INPUTS TO PROCEDURES

We have a pentagon-drawing procedure

TO PG
REPEAT 5 [FD 40 LT 72]
END

Each time we use this procedure, it will draw a pentagon of side
length 40 turtle steps. A pentagon-drawing procedure would be more
useful if it could draw pentagons of various sizes. We could specify
the side length needed each time the procedure is used. Since this is
a different procedure it must have a different name. Let's choose
PENTAGON. For example

 there must be a space
before the colon, but
not one after it

TO PENTAGON :3SIDE
REPEAT 5 [FD :SIDE LT 72]
END

—30—

The word SIDE is called an input to the procedure. Notice how SIDE is
used in the FD command, instead of a fixed number.

Using this procedure, we can now draw pentagons of different sizes.
When the procedure has been defined, PENTAGON DEFINED will appear.

Next to the ? type

PENTAGON 35

The computer should respond

Now try (don't clear the screen first)

PENTAGON 70

The computer should respond

The number that we used, i.e. 35 or 70, is substituted for :SIDE

wherever it appears in the procedure.

—31—

There is nothing special about the word that is used for the input in
PENTAGON, i.e. SIDE. Any word or letter can be used, but it must
commence with a colon, and can have no spaces within it. It is better
if the word is meaningful, for instance we used :SIDE in the pentagon
procedure. Another meaningful word would be LENGTH, or maybe the
letter L.

A FIRST POLY PROCEDURE

We can vary the angle as well as the length of the sides. If we use
both these inputs together, we can make any number of regular polygons
and in any sizes. The procedure would look like this

TO POLY :SIDE :ANGLE
REPEAT 360/:ANGLE [FD :SIDE RT :ANGLE]
END

this means 360
divided by the
angle

When the REPEAT statement is executed, the computer will calculate the
number of times to repeat the commands by dividing 360 by the angle
that we have input. Try the following

POLY 100 120

The computer should respond

This will draw a triangle, since the computer will repeat the commands
in the brackets 360/120 = 3 times, and turn 120 degrees each time.

To draw a circle we can type

POLY 1 1

A eircle can be thought of as having a lot of very small sides. Going
forward 1 step, turning left 1 degree, and doing this 360 times,
should draw us a circle.

Try playing "turtle" yourself.

EXERCISES

2.2 Using POLY, draw a pentagon, a hexagon and a circle.

2.3 Draw a cirele of SIDE 2 and ANGLE 2. What is different from
a circle of SIDE 1 and ANGLE 1?

2.4 Now draw a circle of SIDE 2 and ANGLE 4. What has happened?

2.5 Try a polygon of SIDE 10 and ANGLE 10.

2.6 What relationship is there between the side length of the
polygon and the speed with which the turtle draws it?

—33—

2.7 Write a procedure SPINPOLY

TO SPINPOLY
REPEAT 4 [POLY 50 90 LT 90]
END

Experiment using this procedure. Can you modify SPINPOLY, so
that it has three inputs, a side and an angle to draw a
particular polygon, and a spin to turn the polygon each time it
is drawn?

COMMANDS FOR EDITING PROCEDURES

Type and dd ine the step by step square procedure.

If you have defined and used a procedure, and it is not as you wish,
then you can change or edit it. Typing EDIT and the title of the
procedure places the system in the edit mode (similar to the defining
mode), and the procedure is listed on the screen. Then you can make
changes. Type

APPLE LOGO

EDIT sQ3 EDIT "SQ3

The computer will enter edt mode and the SQ3 procedure will be
listed

TO SQ3
FD 50
LT 90
FD 50
LT 90

LT 90

—34—

The cursor is on the T at the top left of the screen.

The following commands ean be used to correct errors and make
alterations to procedures in edit mode. There are more, but we will
only discuss about six of them as that is all we need at present.

Moving the Cursor Left and Right:

These keys enable you to move the cursor left and right along a line,
without changing the characters on the line. At the end of a line,
pressing the same key again moves the cursor to the next line. Try it
and see what happens.

(nr Loco) APPLE LOGO

<—- —> CTRL-B CTRL-F
(left and right arrow keys) (left) (right)

Use the right hand movement key to move the cursor to the first space
after the LT 90. Now move the cursor with the left movement key back
to the T in the left top corner of the screen.

Remember when you use the CTRL key you hold it down first, then press
the other key mentioned (B in CTRL-B).

Deleting the Character Under the Cursor (CTRL-D)

Now use the right hand cursor movement key to move the cursor to cover

the 5 of the first FD 50.

You can erase the letter under the cursor by holding down the CTRL key
and pressing D

FD,50

Now press CTRL-D and you will have

FD,0

Now type 1

FD 10 \
Move the cursor with the cursor control key back to the 1.

FD_10

t
Press CTRL-D to erase the 1, then type 5 to replace it.

FD 50 "
Holding the CTRL key down and pressing D several times, deletes one

character each time. Now use CTRL-D to delete the 0, so you have

FD 5
—_—

eursor {— y

Now type 0 to get back the original line.

FD 50 \

If You Are Really Messing It Up

If you have typed lots of things wrongly then don't despair; type
CTRL-G. This stops everything without keeping your changes, and you
will be back in immediate mode. You ean type EDIT and the title of
the procedure, and start again.

—36--

Deleting the Character to the Left of the Cursor

If you wish to delete a character to the left of the cursor, then you
press the ESC key if you have MIT LOGO, and press the left arrow key
if you have APPLE LOGO.

Caitr L060 APPLE LOGO

ESC <— (left arrow key)
(left delete key) (left delete key)

The cursor is on the first space after the 0 of FD 50. Now use the
left delete key to remove the entire line, then retype the line (but
don't type RETURN at the end of the line).

Now move the cursor with the right movement key until it is at the end
of LT 90.

FD 50

Moving the Cursor Up One Line (CTRL-P)

Holding the CTRL key down and pressing P, moves the cursor up one

line.

Now press CTRL-P to move the cursor up one line, and move it left

until it is over the D.

LT 90

Moving the Cursor Down One Line (CTRL-N)

Holding the CTRL key down and pressing N, moves the cursor down one

line.

Press CTRL-N and you will have

FD 50

Mc

—37—

Inserting in the Middle of a Line

You will have already inserted characters into a previously typed line
when you changed FD 50 to FD 10. When inserting one or more
characters into the middle of a line, the cursor should be moved to
the position after that in which the character is to be put, and
typing started from there.

Now type AAA and you will have

FD 50

Notice how the characters in front of the cursor move ahead of it.

Now move the cursor back to the first A and delete with CTRL-D three
times to get rid of the A's.

Placing a New Line Between Existing Lines (CTRL-O)

To add a line in between two other lines, move the cursor to the
beginning of the line below where you wish to insert the new line.
Hold down the CTRL key and press O. A line space will appear.

Now use CTRL-P and the left movement key to position the cursor at the
beginning of the first FD

TO SQ
FD 50

Press CTRL-O,and a line will open

TO SQ

usr 20

Now type in AA
BB
CC

 followed by RETURN

—38—

Your procedure will look like this

FD 50
LT 90 ete.

Now use the left delete key continuously to remove AA, BB, CC.
Alternatively use the left movement key to take the cursor back to the
first A, then use CTRL-D continuously.

The REPT Key

The key marked REPT is used to repeat continuously any other key
pressed. If you type F with one finger and at the same time put
another finger on the REPT key, you should see

FFFFFFFFFFFFFFFFFFFFFF

To stop the repeating, take your finger off the REPT key.

If you wish to move the cursor up several lines, hold down CTRL-P and
the REPT key until the cursor moves up to the required line. The REPT
key also works with the ESC and CTRL-D keys to delete more than one
character at a time.

Now throw the edit away with CTRL-G so whatever you have done cannot
change the original SQ3.

Going Over the End of a Line

The Apple screen only allows 40 characters on one line. If you are
typing, you can go over the end of a line and on to the next one. It
does not matter if the information goes beyond the end of the line;
just keep typing. You use the RETURN key to indicate the end of the
LOGO command.

Now type

FFFFFFFFFFFFFFFFFFFFFFF (45 or so of them)

When you came to the end of the line you could just keep typing. If
in edit mod2 LOGO places an exclamation mark "!" at the end of the
line, just to tell you that you have gone to the next line, you can
ignore this mark.

—39—

You ean also place more than one command on a line, such as

FD 50 RT 90

Both will be executed, as if they were on different lines. A warning:
it is harder to read a procedure and understand what it is doing if
there are a lot of commands on one line.

SOME MEMORY AIDS

CTRL-C Complete (define)
CTRL-D Delete under cursor
CTRL-P uP
CTRL-N dowN
CTRL-G Garbage, throw edit away
CTRL-O Open a new line space

_AN EDITING EXERCISE

Type

EDIT EX EDIT "EX

The computer will enter edit mode.

Press RETURN, then type these three lines exactly as they appear.

LEAD ON GOOD DOCTOR
I AM SORRY
NO ICE

Now define this procedure by pressing CTRL-C, and then EDIT EX again.
The procedure will appear on the screen. (Remember "EX in APPLE LOGO)

Move the cursor down so it is over the first letter (L), and carry out
the following instructions. If things go badly wrong press CTRL-G to
throw your editing away, and type EDIT EX again.

1. Move the cursor until it is over the first E (of LEAD).

2. Use CTRL-D to delete characters until the next O is under the

eursor (don't delete this). You should now have

—40—

LON GOOD DOCTOR

I AM SORRY

NO ICE

3. Move the cursor to the next character (N).

4. Use CTRL-D to delete the N and the space. You should now
have

LOGOOD DOCTOR
I AM SORRY
NO ICE

5. Move the cursor until it is over the third O in the line.

6. Now use CTRL-D to delete the next eight letters until the I is
under the cursor. You will notice the next line comes to meet
you. The message is now

Che cursor LOGOI AM SORRY
NO ICE

7. Press the space bar once, then move the cursor until it is on

the space after the I.

8. Use CTRL-D to delete until the S is under the cursor, and you
should have

Ce sem)
LOGO ISORRY
NO ICE

9. Move the cursor until it is over the next O, then delete with
CTRL-D until the N is under the cursor. The procedure will look
like this

10. Now type one space and then move the cursor until it is over

—41—

the O. Now remove the O and the next space, and the I should end

up under the cursor, like this

LOGO IS NICE

Notice how the characters come up from the next line
automatically.

If you didn't get this result you should use CTRL-G, then type EDIT EX
again and start from the beginning of the exercise.

The best way to become confident with editing is to do a little
practice. Have a look at what happens if you press RETURN while the
cursor is in the middle of a line. You can then use the left delete
key to get you back to the original. Try some other editing for
practice.

EXERCISE

2.8 Type your full name in a procedure:

TO MYNAME
CHRISTOPHER ANTHONY ADAMS
END

 your own name
of course

Define the procedure. Now edit it as follows.

Put each name on a separate line. Hint: move the cursor to the
end of each name and press RETURN.

Put them all back onto one line. Hint: move the cursor to the
first character on each line and use the left delete key.

Give yourself an additional middle name.

Delete that extra name - you didn't really like it much.

Reduce the whole lot to your initials.

Define the procedure in its new form, and use it to see what
happens.

GETTING READY TO DRAW A HOUSE

Type in the following procedure:

TO WALLS
FD 50
LT 90
FD 50
LT 90
FD 50
LT 90
FD 50
END

Now define the procedure (remember in MIT LOGO press CTRL-C).

Test that the procedure works by typing

WALLS

The computer should respond

Notice that the turtle is pointing to the right, not straight up (the
direction it pointed in when it started). Adding another 90 degree
turn before the end of the WALLS procedure now will save us some time

later. To do this, type

EDIT WALLS EDIT "WALLS

(irr 100) APPLE LOGO

—A43—

The computer lists the procedure

TO WALLS
FD 50
LT 90
FD 50
LT 90
FD 50
LT 90
FD 50
END

Move the cursor down, using CTRL-N, until it is on the E of END. Then
press CTRL-O to make a new line and type

LT 90

If you were now to define the new procedure, you would lose the old
one. Do not do this just now, because we will need the original WALLS
procedure later. Instead we will give the new procedure another
title. This means we will not lose the old procedure when we define
the new one. Press CTRL-P to move the cursor up to the line

TO WALLS

and with the right hand movement key, move the cursor across to the
space past the S and type 1. The title of the new procedure is now

WALLSI1.

TO WALLS1

Don't forget to define the procedure, press CTRL-C. In the edit mode,
you must press CTRL-C in both MIT LOGO and APPLE LOGO.

THE WORKSPACE

Once defined, a procedure is stored in the workspace in the computer.
The workspace contains the procedures that you have defined in a LOGO
session. You can use the procedures which you have defined, again and
again. Try it. Type

DRAW CLEA RSCREEN
WALLS WALLS

or

DRAW CLEARSCREEN
WALLS1 WALLS1

—44—

Both procedures will be executed in turn because the procedures are

all stored in the workspace as long as the power to the computer is
on. Once the power is turned off, the procedures in the workspace are
lost.

To check whether a particular procedure is presently in the workspace,
you can type

EDIT title EDIT "title

For example type

EDIT WALLS1 EDIT "WALLS1

If the procedure is there, it will be listed, and typing CTRL-C will
change the system back out of edit mode.

If the procedure is not in the workspace, the title TO WALLS1 will
appear on the sereen in edit mode with a blank screen so you can just
type it in.

Note that edit mode can be used to type new procedures or to change
old ones.

DRAWING A HOUSE

Now we are ready to make a slightly more complex drawing. We will try
a house.

Complex pictures can often be thought of as a collection of simpler
shapes. This house is made up of a square and a triangle.

—45—

We already have in the workspace a procedure for drawing a square,
WALLS. We can now define a procedure to draw a triangle, called ROOF.
Type

TO ROOF
REPEAT 3 [FD 50 LT 120]
END

If you are using MIT LOGO, remember to define the procedure with
CTRL-C.

As a first try at writing at a house procedure, then, type

TO HOUSE
WALLS
ROOF
END

The house procedure contains the WALLS and ROOF procedures as
sub-procedures. Type

HOUSE

The drawing looks like this

ot EA EE Ne 65 0 ol SO SO-OD 24 amon ne 08-00 Oh Ot DDD

—A6—

This is a start, but not quite what we want. When the turtle drew the
Square, it ended heading across the screen, horizontally. It started
drawing the triangle from this position and this heading. Now you
play "turtle" with pencil and a piece of paper. Draw out the
procedure step by step with a pencil.

List the WALLS procedure again, using the EDIT command

EDIT WALLS EDIT "WALLS

Note that it has four FD commands, but only three LT commands.
Although the square has been completed, the turtle has finished with a
heading different from that with which it started. This problem is
overcome if we use the WALLS1 procedure. Type CRTL-C, then check that
it is still in the workspace. Type

EDIT WALLS1 EDIT "WALLS1

then define the procedure with CTRL-C.

We will change the HOUSE procedure to include WALLS1 as a
sub-procedure instead of WALLS. Type

EDIT HOUSE EDIT "HOUSE

Now change the line WALLS to WALLS1 by adding the 1. The HOUSE
procedure now looks like this

TO HOUSE
WALLS1
ROOF
END

Define the new procedure with CTRL-C, and the old procedure is

replaced. Now type

HOUSE

a “
ms A oa

The drawing looks like this - it is still not correct.

DEBUGGING

Computer programs, like lots of things we do, very often do not work
properly the first time. The skills of debugging, that is removing
the "bugs" or errors from procedures, are important ones for any
computer programmer to develop.

When a procedure doesn't produce the expected result

1. Look carefully at the result it does produce.

2. Decide exactly how this differs from the desired result.

3. Carefully read the commands which are at present in the
procedure to work out what is wrong and what changes are needed.
Playing "turtle" with a pencil and paper can often help.

This is just what we are doing with our HOUSE procedure, so let's
continue.

We have a main procedure, HOUSE.

TO HOUSE
WALLS1
ROOF
END

It ‘contains two sub-procedures, WALLS1 and ROOF.

TO WALLS1
FD 50
LT 90
FD 50
LT 90
FD 50
LT 90
FD 50
LT 90
END

—43—

and

TO ROOF
FD 50
LT 120
FD 50
LT 120
FD 50
LT 120
END

aa <|
cath

and the resulting drawing is as shown.

— a an

”

“ath

Play "turtle" and trace out the drawing step by step. The first
sub-procedure in HOUSE is WALLS1, ending with the turtle in the

——49—

central position and heading upwards.

Before it does the triangle sub-procedure, it should move up to the
top of the square. It needs another FD 50.

Change the HOUSE procedure to include this command. Refer to the
section on editing procedures if you need to. Remember to define the
new version of HOUSE with CTRL-C. It should now look like this.

TO HOUSE
WALLS1
FD 50
ROOF
END

Type

HOUSE

to use the procedure - and we are nearly there!

When the turtle begins the triangle it should not be heading upward.
We need a LT command, to turn it to the correct heading. You might

—50—

work out by trial and error the size of the turn required, or you
might calculate that it is LT 30.

Change the HOUSE procedure once more to add LT 30 just before the
triangle is drawn.

TO HOUSE
WALLS1
FD 50
LT 30
ROOF
END

Define the procedure with CTRL-C, and type

HOUSE

Presto!

PROCEDURES AND SUB-PROCEDURES

Once a procedure is defined it becomes part of the turtle's
"voeabulary", like FD and LT. It can then be used either on its own
in immediate mode, or as a command in another procedure. In the
latter case, it is called a sub-procedure. Our HOUSE procedure
contained two sub-procedures, WALLS1 and ROOF, as well as some
primitive commands. A primitive command is a command which is part of
the LOGO language, in this case FD and LT.

—51—

IDEAS INTRODUCED IN THIS CHAPTER

Total turtle trip theorem

Variable inputs to procedures

Edit mode

Editing procedures

The workspace

Drawings combining two procedures

Debugging

Procedures and sub-procedures

—52—

SUMMARY OF COMMANDS INTRODUCED IN THIS CHAPTER

MIT LOGO APPLE LOGO

EDIT title EDIT "title

Cursor movement keys:

<—(left arrow) CTRL-B

—>(right arrow) CTRL-F

CTRL-P CTRL-P

CTRL-N CTRL-N

CTRL-O CTRL-O

Delete character keys:

ESC (ese key) <— (left arrow)

CTRL-D CTRL-D

Defining procedures:

CTRL-C CTRL-C

CTRL-G CTRL-G

—53—

DESCRIPTION

enter EDIT mode

move cursor left

move cursor right

move cursor
up one line

move cursor
down one line

insert new line

delete character to

left of cursor

delete character

under eursor

define procedure in
edit mode

diseard edit

3 TURTLE PROJECIS

The projects in this chapter have been contributed by Charlie, Chris
and Gareth.

HIDETURTLE AND SHOWTURTLE

You might prefer not to have the turtle itself show in your picture.
This can be achieved using the HIDETURTLE (abbreviated HT) command.
Let's try it.

Draw a triangle. Type

REPEAT 3 [FD 60 RT 120]

Press RETURN and the turtle will appear in the drawing.

Type

HT

—54—

“a,
ae a

> “ a
bte

Note that this time no turtle is shown. If you wish to make the
turtle re-appear on the screen, use the SHOWTURTLE (abbreviated ST)

command.

Type

ST

If you notice that the turtle is not on the screen at any time,
remember just type ST and it will re-appear.

EXPERIMENTING WITH SIDES AND ANGLES

Let's write some more procedures and include sub-procedures to draw a
variety of pictures. We will also explore some familiar procedures
further, such as our square. This time let's use a nonsense title
that has no relation to the drawing. Let's use EAT. This procedure
will sometimes draw a square, but not always, depending on what number
is typed in for the angle. Now type

TO EAT 3 :A
REPEAT 4 [FD 3S LT :A]
END

Define EAT and then type

EAT 40 90

—55—

We will have a square shape like this

|
This shape is a square because the angle is 90 and the number of
repeats is 4. (Remember 90 X 4 = 360.) Now experiment with different
inputs in the EAT procedure. Don't forget to clear the screen.

Type

EAT 40 180

or

EAT 40 45

and

EAT 100 20

WRAPPING

Do you still have a square shape? You will notice that the turtle has
gone off the edge of the screen and come back on the other side. This
is called wrapping.

ROTATING SHAPES

Draw a shape using EAT, and then move it around its own axis. We will
eall the procedure ROTATE and include EAT as a sub-procedure. Type

TO ROTATE 38 :A
REPEAT 360/:A [EAT :S :A LT 90]
END

We need to type a number for the length and a number for the angle.
The angle 90 will produce a square, so let's first try rotating a
square.

—56—

Type

ROTATE 30. 90

This is what should be on the sereen

Now try a smaller angle but still a number which divides exactly into
360, such as 45. Type

ROTATE 30 45

This drawing should look like this

Try an even smaller angle, such as half of 45, which is 22.5. Note
that the decimal point is typed by using the fullstop or period key, (.).

—57—

Type

ROTATE 30 22.5

Did your drawing look like this?

We can now try some very small angles. Type

ROTATE 15 3

The diagrams below show this shape partly drawn and then completed.

We have used angles which divide evenly into 360. Now we can be
adventurous and try some different angles, such as

ROTATE 40 97

—538—

Is this how yours looks?

" Xx MY
‘iat

MIT LOGO APPLE LOGO

Here is another example. Type

ROTATE 40 33

This looks more interesting.

Cum 1000 § | APPLE LOGO

Notice how this one has what look like loose ends. Why do you think
this is? Hint: remember the Total Turtle Trip Theorem in Chapter 2?

Here are two more. First type

ROTATE 20 18

—59—

Then type

ROTATE 10 1

This one is going on a bit isn't it? You can stop it if you wish to
move on to other drawings. Use CTRL-G.

You could play with this for hours, even weeks. For example, what
would happen if, when the turtle stops after completing ROTATE 40 97,
you typed in again

ROTATE 40 97

Let's type a procedure to rotate ROTATE like this. Type

TO ROTATE2 3S :A
REPEAT 360/:A [ROTATE 3S :A LT :A]
END

First try

ROTATE2 20 22.5

Now try

ROTATE2 20 45

wa
e

*

a
%

e
f

Pe
rs

ce
mm

ec
ne

om
oc

ee
s’

Let's try something a bit different

ROTATE2 30 65

This is different, isn't it? You can continue with these for a long,
long time. Experiment some more.

TYPING MORE THAN ONE PROCEDURE

Now is the time to move on to other drawings. Do you feel hungry?
Perhaps you would like a lollipop! Type

TO LOLLIPOP
FD 50
LT 90
POLY 5 20 |
END

There is a sub-procedure, POLY. That is no problem. If POLY is
already in the workspace, define LOLLIPOP. If POLY is not in the
workspace just continue typing POLY in the defining mode, and define
the two procedures.

TO POLY 38 :A
REPEAT 360/:A [FD :S RT :A]
END

Now define the procedures and type LOLLIPOP. This is how it should
look.

V

Did you notice that the side and angle numbers for the POLY procedure
were included in the LOLLIPOP procedure? What would happen if you
changed these numbers in the LOLLIPOP procedure?

EXERCISES

3.1 Write a procedure to draw a flower with sixteen petals,
similar to that drawn by ROTATE2 20 22.5. Do not draw over
existing lines.

3.2 Try some angles and sides that haven't already been used in
ROTATE, and ROTATE2. For example, use angles of 30, 15 and 7.5

degrees.

3.3 Rewrite LOLLIPOP (eall it LOLLIPOP2), so it has inputs which
vary the angle and side in LOLLIPOP.

DRAWING A HOUSE WITHOUT LIFTING THE PEN

Have you ever been challenged to draw a house without lifting the pen,
and without drawing over existing lines? Let's type a procedure to do
this for us, and title it CRAZY. Type

TO CRAZY
FD 30 LT 30 FD 30 LT 120 FD 30 LT 120
FD 30 RT 135 FD 40 LT 133 FD 30 LT 140
FD 43 LT 133 FD 30 HT
END

—§3—

This is what CRAZY should look like.

Note that we have spaced the commands across rather than down the page
in this procedure.

A COTTAGE WITH EAVES

We have drawn some houses, but we have not drawn a cottage with eaves.
Such a cottage might look like this.

Type these procedures

TO COTTAGE
SIDES LT 90 FD 10 RT 90 ENTRANCE
LT 90 FD 15 LT 90 FD 25 LT 90 EAVES
END

TO SIDES
REPEAT 4 [FD 25 LT 90]
END

TO ENTRANCE
FD 15 LT 90 FD 5 LT 90 FD 15
END

—s4—

TO EAVES
FD 30 RT 120 FD 35 RT 120
FD 35 RT 120 FD 5
END

Now type

COTTAGE

How would you draw a terrace of cottages, that is a row of cottages
with common walls? Hint: check the position of the turtle when each
cottage is finished, before you draw the next one. This is how it
eould look.

PENUP AND PENDOWN

In all the pictures we have drawn so far, the turtle has left a
visible trail, There are times when we do not wish to see the trail.
We can type PENUP (abbreviated PU), then moye the turtle to a new
position using FD, BK, LT and RT commands, then type PENDOWN
(abbreviated PD) and the procedure we wish to use. Let's try it.
Type

FD 30

When we wish to move the turtle without leaving a trail, we often need
to change the direction in which the turtle is heading as well. Type
two procedures, to move to the left or the right, titled SLIDEL and
SLIDER

—65—

TO SLIDEL :D

PU
LT 90
FD :D
RT 90
PD
END

and

TO SLIDER
PU
RT 90
FD :D
LT 90
PD
END

y
y

We can make an avenue of cottages using the SLIDEL and SLIDER
procedures. Type

TO AVENUE
SLIDEL 105
REPEAT 5 [COTTAGE LT 90 FD 25 LT 180 SLIDER 50]
END

Does it look like this? Could you draw several avenues?

 on] inl tel tal le

GOING HOME

The turtle has a home, which is in the centre of the screen heading
upwards. Any time we wish the turtle to return to this position, we
type HOME and the turtle returns. The turtle will leave a trail,
unless we type PENUP before typing HOME.

—66—

DRAWING A CLOCK

We can use the PENUP, PENDOWN and HOME commands and also include the
SLIDER procedure to draw a clock.

Type

TO TIME
SLIDER 90 CLOCK HANDS
END

TO CLOCK
REPEAT 16 [LT 22.5 FD 30]
END

TO HANDS
PU HOME BK 25 RT 90 FD 15 LT 90 PD
FD 60 BK 60 RT 90 FD 40
END

Define the above procedures and then type TIME. If your clock goes
low on the screen where there is text, type FULLSCREEN to see the
complete drawing. There will be no text on the sereen when you do
this. The turtle makes a nice point on the hour hand. If it is not
shown, type ST. Remember you can type SPLITSCREEN if you want to see
the text at the bottom of the screen again.

—§7—

EXERCISES

3.4 Use SLIDEL and SLIDER with the square and triangle
procedures, to move the drawings in lines round the screen. What
happens if the direction in which the turtle is facing isn't
straight up when you start the drawings?

3.5 This is a harder exercise that you might want to come back to
later. Rewrite the clock drawing procedures so that you can use
an input that sets the hour hand at a particular hour.

DRAWING A PLANE

We will type a longer procedure, titled PLANE. It uses many
sub-procedures and includes the PENUP and PENDOWN commands. It looks
like this.

Now type each procedure and define it as you go. If you make a typing
error, remember the edit commands in Chapter 2.

TO NOSE
PU FD 20 PD RT 160 FD 30 BK 30
LT 320 FD 30 LT 110 FD 25
END

—638—

TO FUSELAGE
RT 90 FD 29 BK 29 RT 90
FD 29 LT 90 FD 29
END

TO WINGS
RT 30 FD 100 BK 100 PU LT 120 FD 29
PD RT 60 FD 100 RT 120 FD 127
END

TO TAIL
BK 63.5 RT 90 FD 20 LT 165 FD 21
BK 21 LT 30 FD 21 RT 15
END

TO TL
FD 10 LT 90 FD 5 LT 90 FD 10 LT 90
END

TO PLANE
PU FD 80 PD NOSE FUSELAGE WINGS
TAIL TL FD 22 LT 90 TL HT
END

When you have defined the sub-procedures and the procedure PLANE, type
PLANE.

DRAWING A STICK FIGURE

We have a house, a plane and a clock, but no people to use these
things. It is time to create some people. This procedure has a
sub-procedure POLY. If POLY is in the workspace, do not type it
again. If it is not in the workspace, then you will need to retype
POLY when you come to it. We will title this procedure MAN. Type

TO BODY :8
FD 3s

END

Define BODY and type BODY 50. Now continue. Type

TO HEAD
LT 90 POLY 1 5 RT 90 P
FD 3 BK 6 FD 3 RT 90 P
PU FD 2 LT 90 FD 3 PD
FD 1 PU FD 3 LT 90 FD
END

LT 90 PD
PD FD

B

F
F 3

U BK 8 PD

D
D

D1
12 PD

U 3
U 2
F Pp

—69—

Type POLY now, if it is not in the workspace.

TO POLY 3:8 :A

REPEAT 360/:A [FD :S RT :A]
END

Does the HEAD procedure work? Now for the arms and legs.

TO ARMS
LT 90 FD 30 BK 60 FD 30 RT 90
END

TO LEGS
LT 135 FD 40 BK 40 LT 90
FD 40 BK 40 LT 135
END

Let's put the man together. Type

TO MAN
BODY 50 HEAD BODY 5 ARMS
BODY 45 LT 180 LEGS HT
END

Don't forget to clear the screen. Type MAN and see if your drawing
looks like this.

|

%
 .

%

e,

:
*

r
pr

es
ee

re
ns

en
ss

ea
ne

so
ra

se
re

rn
en

en
ce

rt
ag

en
es

3

*

Turn the turtle LT 90 and type MAN again. If you do this twice more,
the drawing should look like this.

Turn the turtle 30 degrees and fill in the gaps. Now try turning the
turtle 10 degrees. Remember the REPEAT command.

EXERCISE

3.6 Write a procedure called SPINMAN, with an input that is the
number of degrees to turn MAN each time.

—71—

CLEARING THE SCREEN WITHOUT MOVING THE TURTLE

We can move our man across the sereen by typing a procedure titled
MARCH, which includes the SLIDEL procedure. (If the SLIDEL procedure
is not in the workspace, type it in now.)

TO MARCH
REPEAT 28 [MAN SLIDEL 10]
END

The man will march across the screen like this.

If you would like the man to march across the sereen and not leave a
drawing of himself each time, you can clear the screen without
returning the turtle to the central position. Type

CLEARSCREEN CLEAN

(abbreviated CS)

(in 1060; APPLE LOGO

Let's try it. Type

TO MARCHI1
REPEAT 6 [MAN SLIDEL 20 CS]
END

TO MARCHI1
REPEAT 6 [MAN SLIDEL 20 CLEAN]
END

Now type MARCH1 and watch the man move across the screen.

—72—

SETTING THE TURTLE'S HEADING AND CO-ORDINATES

Sometimes we may wish to set the turtle's direction to a particular
angle, independently of where it was previously pointing. For
example, heading 0 or heading 360 always points the turtle upwards,
and heading 180 points it straight down.

Type

PU
HOME

The turtle will be in the centre of the screen facing straight up.
Type

SETHEADING 180

The turtle should now be facing straight down.

Type

SETHEADING 180

and the turtle will not move because it is already pointing at that
angle.

SETHEADING (abbreviated SETH) sets the turtle's heading to an absolute
direction, as shown above.

Type

SETX 100

and the turtle should move 100 steps to the right of home.

Type

SETY -60

and the turtle should move 60 turtle steps straight down from its
previous position (its x co-ordinate hasn't changed).

The HOME position has an x co-ordinate of 0. Positive x co-ordinates
are on the right of the screen and negative x co-ordinates are on the
left of the screen.

The HOME position has a y co-ordinate of 0. Positive y co-ordinates
are on the top half of the screen and negative y co-ordinates are on
the bottom half.

—73—

Type

SETX -50
SETY 70

The turtle should now be at the top left hand side of the screen.

If the pen were not up, the turtle would leave a trail. These
commands with the pen up are very useful if you wish to start a
drawing in a specific position on the screen.

The commands HEADING, XCOR and YCOR enable you to find out where the
turtle is on the screen, and the direction in which it is pointing.

Type

(PRINT HEADING XCOR YCOR)

The computer should respond

180. -50. 70.

which is the turtle's current heading and position (providing that you
haven't changed it meanwhile).

Type

SETHEADING HEADING-10
SETX XCOR+20

By looking at the screen you will see that the turtle's position and
heading have changed. Type

(PRINT HEADING XCOR YCOR)

The computer should now respond with

170 -30 70

which are the turtle's new co-ordinates.

EXERCISE

3.7 What are the biggest x and y co-ordinates that you can have
without the sereen wrapping round?

—74—

MORE ON MARCHING MEN

We could change the MARCH procedure as follows:

TO MARCH2
REPEAT 5 [MAN SLIDEL 30]
END

Now type

SETH 135
PU
SETY -60
SETH 45
PD
MARCH2

Use MARCH2 and the computer should respond

A HANGMAN PROJECT

If you have ever played "Hangman", you will enjoy the following
drawing.

—75—

Type

TO A
PU LT 90 FD 25 RT 90 PD FD 100 BK 125
END

Define A and then type

TO B
RT 90 FD 50 BK 100 FD 50 LT 90 FD 125
END

Define B, and then use A and B to see what they draw. Then go on to
the next procedure. Type

TO C
LT 90 FD 20 BK 100 FD 80 LT 90 FD 95
END

Define C, then use A, B and C. Continue in this way until all the
sub-procedures have been completed.

TO D
RT 45 FD 43 BK 43
END

TO E
LT 90 FD 43 BK 43 LT 135
FD 95 RT 90 FD 80
END

TO F
RT 90 FD 20 LT 90
END

TO G
POLY 5 20 RT 90 PU FD 28 PD
END

TO H
FD 35 BK 20
END

TO I
LT 45 FD 20 BK 20
END

TO J
RT 90 FD 20 BK 20 LT 45 FD 20
END

TO K
LT 45 FD 20 BK 20
END

TO L
RT 90 FD 20 HT
END

TO POLY 3 :A

REPEAT 360/:A [FD :S RT :A]
END

Finally let's put it all together. Type

TO HANGMAN
PU BK 20 PDPABCDEFGHIJ KL

END

Now define the procedure and type HANGMAN.

EXERCISES

3.8 Draw a rocket.

3.9 Using the circle drawing version of POLY for the wheels, draw

a car.

IDEAS INTRODUCED IN THIS CHAPTER

Experimenting with procedures

Larger projects in turtle geometry

A system of co-ordinates

SUMMARY OF COMMANDS INTRODUCED IN THIS CHAPTER

MIT LOGO

SHOWTURTLE, ST

HIDETURTLE, HT

CLEARSCREEN,CS

HOME

PENUP , PU

PENDOWN, PD

SETHEADING,
SETH

SETX

SETY

HEADING

XCOR

YCOR

APPLE LOGO

SHOWTURTLE, ST

HIDETURTLE, HT

CLEAN

HOME

PENUP , PU

PENDOWN , PD

SETHEADING,
SETH

SETX

SETY

HEADING

XCOR

YCOR

—73—

DESCRIPTION

show turtle on screen

turtle figure hidden

clears sereen but doesn't

move the turtle

set the turtle to the

eentre of the screen
facing up

stop leaving turtle trail

start leaving trail

set turtle heading in
absolute degrees

set turtle x coordinate

set turtle y coordinate

output current turtle

heading

output current turtle x
coordinate

output current turtle y
coordinate

RECURSION AND MORE
TURTLE PROJECTS |

AN INTRODUCTION TO RECURSION - COUNTING BACKWARDS

The following procedure is designed to count backwards. Carefully type
and define it. (Remember MIT LOGO is on the left and APPLE LOGO is on
the right.)

TO BACKWARDS :NUMBER TO BACKWARDS :NUMBER
IF :NUMBER = 0 STOP IF :NUMBER = 0 [STOP]
PRINT :NOMBER PRINT :NUMBER
BACKWARDS :NUMBER - 1 BACKWARDS :NUMBER - 1
END END

Now use it to count backwards from 10.

BACKWARDS 10

The computer should respond

oS
me

b
o

OO

mH

OF
F

OD

~1

CO

CO

Simple enough! Now let's look carefully at how the procedure works.

The first line gives the procedure a title, BACKWARDS, and names an
input, NUMBER, for the procedure. The second line tests whether the
value of NUMBER is zero, and stops the procedure if it is. The third
line prints the (non-zero) value of NUMBER.

The fourth line is the really interesting one. You will remember that
procedures can use (or eall) other procedures. It is also possible
for a procedure to call itself, and this is what is happening here.
This process is called recursion.

A good way to think about it is this:

If a genie appears and offers you three wishes
you should use your third wish to wish for

three more wishes

(Abelson, 1982, p.33).

At the fourth line of BACKWARDS, a new copy of the BACKWARDS procedure
is made in the computer's memory. However this time it is used with
an input whose value is 1 less than the original input. The second
copy of the procedure is executed in the same way as the original, so
at its fourth line a third copy is set up with a still smaller input
value, and so on.

Eventually the newest copy will have an input of zero. This copy of
the procedure will stop at its second line, as a result of the IF
sNUMBER = 0 test being true, and no further numbers will be printed.

We could modify the BACKWARDS procedure to count back by 2's. Type
and define a new procedure to do this, using BACKWARDS as a guide.

TO BACK2 :NUMBER TO BACK2 :NUMBER
IF :NUMBER = 0 STOP IF :NUMBER = 0 [STOP]
PRINT :NUMBER PRINT :NUMBER
BACK2 :NUMBER - 2 BACK2 :NUMBER - 2
END END

Use the new procedure to count back from 10.

BACK2 10

The computer should respond

0

N
f

&

©

—380—

Try the procedure with some other inputs including some odd numbers.
It will only stop properly if you use even numbers. If you input an
odd number you will need to stop the procedure yourself by pressing
CTRL-G.

A RECURSIVE SPIRAL PROCEDURE

Now we will try a recursive procedure for drawing a spiral. Type and
define

TO SPI :LENGTH :ANGLE : INC TO SPI :LENGTH :ANGLE :INC
IF :LENGTH > 100 STOP IF :LENGTH > 100 [STOP]
FD :LENGTH FD :LENGTH
LT :ANGLE LT :ANGLE
SPI :LENGTH+:INC :ANGLE :INC SPI :LENGTH+:INC :ANGLE : INC
END END

Note the recursive call in the fifth line of the SPI procedure. In
this call the value of LENGTH is changed each time by the value of
INC. First we will experiment with the procedure; then we will
examine exactly how it works.

Use the procedure with sets of three inputs, for example

SPI 10 90 2

(]

—8i1—

SPI 5 144 5

SPI 20 216 10

Now let us look in detail at how SPI works with inputs of 10, 90 and
2.

1. We use SPI with three inputs, LENGTH (10), ANGLE (90) and INC
(2).

2. The IF command is used to test whether the value of LENGTH is

greater than 100. If it is, the procedure stops. LENGTH has a
value of 10, so the procedure goes on.

3. The turtle moves ahead LENGTH steps, so it goes forward 10
steps.

4. The turtle turns left ANGLE (90) degrees.

5. SPI is called again with a new value of LENGTH. LENGTH has
the value of INC added to it, so the new value of the first
input is 12.

6. LENGTH is tested to see whether it exceeds 100 yet. The new

—33—

value for LENGTH is 12, so it doesn't.

7.The turtle now moves forward 12 steps.

8. The turtle turns 90 degrees.

9. SPI is called again with new values of its inputs, they are
now 14, 90 and 2. In this way, the sides of the figure get
longer and longer and a spiral shape emerges. Finally, when
LENGTH has a value exceeding 100, the turtle will stop.

BIGGER SPIRALS

The SPI procedure stops when the length of a side in the spiral is 100
turtle steps long. Change the procedure to draw bigger spirals. Make
it keep drawing until the side length reaches 350 turtle steps.

TO SPI :LENGTH :ANGLE : INC TO SPI :LENGTH :ANGLE : INC

IF :LENGTH > 350 STOP IF :LENGTH > 350 [STOP]
FD :LENGTH FD :LENGTH
LT :ANGLE LT :ANGLE
SPI :LENGTH+: INC :ANGLE INC SPI :LENGTH+: INC :ANGLE : INC
END END

Use the procedure again with the inputs that you used with the earlier
SPI procedure. Some of the spirals will look nicer if you eliminate
the several text lines at the bottom of the sereen and allow the
drawing the full screen area. The command for this is

FULLSCREEN

Although you cannot see the commands you type after FULLSCREEN,
continue as before. Any error messages will in fact appear at the
bottom of the screen. When you want to restore the screen format with
the text lines at the bottom, type the command

SPLITSCREEN

MORE ON SCREEN MODES

Both FULLSCREEN and SPLITSCREEN have abbreviations.

The abbreviation for SPLITSCREEN is CTRL-S, and the abbreviation for
FULLSCREEN is

CTRL-F CTRL-L

FULLSCREEN and SPLITSCREEN are convenient to use within a program.

—84—

The control keys are easy to use from the keyboard since they can be

typed at any time.

When LOGO finds an error in a procedure, it will stop and an error
message will be printed on the screen. In fullscreen mode you may not
see the message at all, and in splitsereen mode some of it may be
obscured. A further mode called text mode allows the full screen to
be devoted to text. Now use the CTRL key to get

CTRL-T

and the screen should go into text mode. Any error (or any other
message) will be completely shown on the screen. If you had a
drawing on the screen before you used CTRL-T, don't worry; ali of
these commands are reversible.

All of the above commands can be used in any combination to cycle
between the various modes. No pictures or messages will be lost.

EXERCISES

4.1 Experiment with various combinations of side and angle in
SPL

4.2 Modify SPI by taking the line

IF :LENGTH > _ ete.

out of the procedure. Call this procedure SPI2. Now use SPI2

with the various combinations of side and angle that have been
suggested, and some of your own.

MORE RECURSIVE PROCEDURES

In Chapter 2 the POLY procedure was used.

TO POLY :SIDE :ANGLE
REPEAT 360/:ANGLE [FD :SIDE RT :ANGLE]
END

A more general form of POLY can be written using recursion. Call this
procedure POLY1. Type

TO POLY1 :SIDE :ANGLE
FD :SIDE
RT :ANGLE
POLY1 :SIDE :ANGLE
END

—85—

Notice the similarity between this and the SPI procedure. Define
POLY1 and type

POLY1 100 90

The computer should respond with a square (but to stop it you will
need CTRL-G).

Likewise you can produce all the regular polygons. Side 100, angle
120 will produce a triangle. Side 1 and angle 1 will produce a
circle; so will side 1, angle 2; so will side 10, angle 10 and so on.

Try

POLY1 100 144

The computer should respond

Type

POLY1 100 160

The computer should respond

Type

POLY1 100 151

The computer should respond

EXERCISES

4.3. Use POLY1 to produce some regular polygons such as octagons
and nonagons.

4.4 Experiment with some sides and angles of your own. Use
particularly some that don't divide evenly into 360 degrees or a

—37—

multiple of 360 (such as 720 and 1080).

4.5 Explain what happens when the angle you use does divide
exactly into one of these numbers, and what happens when the

angle doesn't.

4.6 What is different about the figures drawn when the angle is
greater than 90 degrees?

GETTING ROUND CIRCLES

On some monitor sereens circular figures, squares, ete, will appear
squashed up. A command exists for you to compensate for this if it is
causing you problems.

-ASPECT 1.0 SETSCRUNCH 1.0

When you first load LOGO the computer is automatically set up as if
you had typed

eASPECT .8 SETSCRUNCH .8

The use of 1.0 will make the turtle's vertical steps larger in

relation to its horizontal steps, so a cirele will be stretched
upwards. You should choose a figure that suits your own monitor
screen. This command must be used before, not after a drawing.

GROWING THINGS

Type these procedures to make a square grow.

TO GROWSQUARE :SIDE
SQUARE :SIDE
GROWSQUARE :SIDE+5
END

TO SQUARE :SIDE

REPEAT 4 [FD :SIDE RT 90]
END

—83—

Define and use GROWSQUARE; the computer should respond with something
like this

Now grow a triangle.

TO GROWTRIANGLE :ssIDE
TRIANGLE :SIDE
GROWTRIANGLE :SIDE+5
END

TO TRIANGLE :SIDE
REPEAT 3 [FD :SIDE RT 120]
END

Use GROWTRIANGLE, and the computer should respond with something like
this

Yi

WH
 iy ii

STOPPING THESE GROWING THINGS

You will remember the way SPI was stopped with the IF command. Now
modify GROWSQUARE and GROWTRIANGLE with a similar command in their
second line.

—39—

IF SIDE > 100 STOP IF :SIDE > 100 [STOP]

You will probably want to experiment with the stopping value; try 350,
500 and 1000.

EXERCISES

4.7 GROWSQUARE and GROWTRIANGLE each grow by 5 turtle steps.
Try them with other increments such as 1, 2 or 10.

4.8 Modify GROWSQUARE and GROWTRIANGLE so that the increment
is a variable:

TO GROWSQUARE! :SIDE INC

SPINNING THINGS

Now we will spin the GROWSQUARE and GROWTRIANGLE drawings in
various ways. Type

TO SPINGS
REPEAT 4 [GROWSQUARE 1 RT 90]
END

The computer should respond

—90—

Spin GROWTRIANGLE; try

TO SPINGT
REPEAT 6 [GROWTRIANGLE 1 RT 60]
END

and the computer should respond

Now modify SPINGT to produce SPINGTI1:

TO SPINGT1
REPEAT 12 [GROWTRIANGLE 1 RT 30]
END

The computer should respond

Note that in the above examples the number in the REPEAT and the angle
of the turn multiplied together give 360.

Now for a bow tie:

TO BOW
GROWTRIANGLE 1
RT 180
GROWTRIANGLE 1
END

—99—-

SPINNING CIRCLES ROUND AND ROUND

TO SPINCIRCLE :ANGLE
REPEAT 360/:ANGLE[CIRCLE RIGHT :ANGLE]
END

TO CIRCLE
REPEAT 36 [FD 6 RT 10]
END

Notice that CIRCLE has unusual forward and right amounts. The FD 6 is
so the turtle will draw a fairly fast circle, and the right 10 will
keep it small. (You could use a circle procedure with side 1 and
angle 1 but this would be larger and take longer to print.)

Now type

SPINCIRCLE 90

—93—

The computer should respond

Try

SPINCIRCLE 10

The computer should respond

If we stop SPINCIRCLE (using CTRL-G) at different stages before. it is
complete we will get some unusual results.

—95—

SPINNING SPIRALLING THINGS

You will need the TRIANGLE and SQUARE procedures in your workspace for

the next projects. Type

TO SPITRI :SIDE :ANGLE NC

TRIANGLE :SIDE
RT :ANGLE
SPITRI SIDE+:INC :ANGLE ANC
END

Now try

SPITRI 1 10 3

In SPITRI the variable ANGLE is the amount the triangle is turned

after it is drawn, and INC is the amount that the triangle grows
between drawings.

We can spin a square in the same way.

TO SPISQUARE :SIDE :ANGLE :INC
SQUARE :SIDE
RT :ANGLE
SPISQUARE :SIDE+t:INC :ANGLE :INC
END

—§6—

Type

SPISQUARE 1 10 5

EXERCISES

4.9 Place a stop into SPISQUARE and SPITRI after 100 turtle
steps.

4.10 Try other inputs with SPISQUARE and SPITRI.

4.11 Write a set of procedures to spin any polygon in a similar
way to SPINCIRCLE. HINT: you will need the form of POLY that was
in Chapter 2, and another variable (not ANGLE in POLY) to turn
between uses of POLY.

MAKING TUNNELS

This set of procedures starts off drawing a large circle; then it
increments the angle in the circle procedure to draw a smaller circle.
This process goes on until the procedure stops. The result is like a
tunnel.

—-97—

Type

TO TUNNEL :ANGLE
IF :ANGLE > 9 STOP
RCIRCLE :ANGLE

TO TUNNEL :ANGLE
IF :ANGLE > 9 [STOP]
RCIRCLE :ANGLE

TUNNEL :ANGLE+1 TUNNEL :ANGLE+1
END END

TO RCIRCLE :ANGLE
REPEAT 360/:ANGLE [FD 2 RT :ANGLE]
END

both LOGO'S

Type

TUNNEL 2

and the computer should respond

MAKING EYES

We will join two tunnels together so they look like eyes. Type

TO EYES
TUNNEL 2
RT 180
TUNNEL 2
END

—98—-

Now use EYES and the computer should respond

MORE ABOUT THE STOP COMMAND

Whenever we have used STOP, the computer has responded with the ?
prompt and we have gone on to the next thing we want to do. STOP
doesn't stop the computer. It stops the procedure that is being used,
and returns the computer to the next line of the procedure that called
the procedure that is stopped. In the example above, this means that
when TUNNEL stops, the computer goes back to the next line of EYES,
which is RT 180. It then carries out the RT 180 command. When TUNNEL
next stops the computer also returns to EYES at the next line, but
this is END which also has the effect of returning the computer to the
next line of whichever procedure called EYES. No procedure called
EYES so the ? prompt is printed and the computer waits for the next
com mand.

TESTING WITH THE IF COMMAND

In the procedure TUNNEL and various others in this chapter we have
used an IF command. The examples that have been used show that when a
condition is true, the command that is part of the IF is obeyed;
otherwise the computer goes on to the next line of the procedure.
Look at the TUNNEL procedure.

TO TUNNEL :ANGLE TO TUNNEL :ANGLE

IF sANGLE > 9 STOP IF :ANGLE > 9 [STOP]
RCIRCLE :ANGLE RCIRCLE :ANGLE
TUNNEL :ANGLE +1 TUNNEL :ANGLE +1
END END

—99—

When we use TUNNEL 2, the first time through the procedure ANGLE has
the value 2. The IF tests whether ANGLE is greater than 9. The
result is FALSE (it is not greater than 9) so the computer goes to the
next line. Finally TUNNEL will be called with ANGLE having a value of
9 and the result of the test will be TRUE, so the LOGO command on the
same line as the IF will be executed, in this case STOP.

Another way of writing TUNNEL would be

TO TUNNEL :ANGLE TO TUNNEL :ANGLE
TEST :ANGLE > 9 TEST :ANGLE > 9
IFTRUE STOP IFTRUE [STOP]
IFFALSE RCIRCLE :ANGLE IFFALSE [RCIRCLE :ANGLE]
TUNNEL :ANGLE + 1 TUNNEL :ANGLE + 1
END END

This works the same way as the IF but it is divided into two parts.
The TEST returns either TRUE or FALSE. The command on the line IFTRUE
will be executed if TEST returned TRUE, and the line IFFALSE will be
executed if the result of the test was FALSE. IFTRUE can be
abbreviated IFT and IFFALSE can be abbreviated IFF.

Let us now look at another example.

TO SELECT :NUMB TO SELECT :NUMB
IF :NUMB=1 CIRCLE IF :NUMB=1 [CIRCLE]
IF :NUMB=2 SQUARE IF :NUMB=2 [SQUARE]
END END

If we type SELECT 1, the procedure CIRCLE will be used. When CIRCLE
is finished, the computer will return to the next line of SELECT.
Since NUMB has the value 1, the next line will be ignored and SELECT
will end. Let us now examine a slightly altered form of SELECT.

TO SELECT :NUMB TO SELECT :NUMB
IF :NUMB=1 CIRCLE IF :NUMB=1 [CIRCLE]
SQUARE SQUARE
END END

This time we have left out the second IF. If we say SELECT 1, the
CIRCLE will be printed and the computer will return to SELECT at the
next statement, so SQUARE will be printed (not what we wanted). If we
say SELECT 2 then the SQUARE will be printed, which is what we wanted.
A procedure that only sometimes does what we want is not very useful.

—100—

A better SELECT procedure would be

TO SELECT :NUMB TO SELECT :NUMB
IF :NUMB=1 CIRCLE STOP IF :NUMB=1 [CIRCLE STOP]
IF :NUMB=2 SQUARE STOP IF :NUMB=2 [SQUARE STOP]
PRINT [ERROR IN SELECT] PRINT [ERROR IN SELECT]
END END

This version is the best of the lot because

1. It stops after the selection is finished.

2. Only one selection is printed.

3. It prints an error if you make a wrong selection. The PRINT
command is examined in detail in Chapter 5. For now we can say
that it prints the message in square brackets on the screen, so
now you have a way of printing your own error (or any other)
messages.

4. It will only get to PRINT if an incorrect selection is made.

More than one command ean be part of the IF (or IFTRUE or IFFALSE). In
MIT LOGO everything until the next RETURN is part of the IF (even if
it goes over the line). In APPLE LOGO everything in the square
brackets is part of the IF (you cannot have RETURN in the brackets).

We can use equals (=), greater than (>) or less than (<) in IF or TEST
statements

Throughout the text, both IF and TEST with IFTRUE and IFFALSE will be
used, so you should get used to both ways of testing.

EXERCISES

4.12 Rewrite and use the final form of SELECT with TEST. Make
sure you have suitable square and circle procedures.

4.13 Add POLY1 to SELECT, and verify that it works with all
possibilities.

CREATING WALLPAPER PATTERNS

When the turtle goes over the edge of the screen it returns at the
opposite point and continues drawing. We saw this effect with earlier
spiralling patterns. It can be used to produce patterns similar to
wallpaper or textile designs.

—101—

Type

TO SPIR :SIDE :ANGLE :INC

FD :SIDE

LT :ANGLE

IF :SIDE < 0 STOP

SPIR :SIDE-: INC :ANGLE : INC
END

Define and use the procedure. Try

SPIR 25 60 1

The computer should respond

TO SPIR :SIDE :ANGLE : INC
FD :SIDE
LT :ANGLE
IF :SIDE < 0 [STOP]
SPIR :SIDE-:INC :ANGLE
END

: INC

6
Notice that this procedure spirals in, not out.

(So could a cirele, a square, a spiral that basis of a pattern.
spiralled out, or just about any figure).

TO WALLPAPER : INC
IF sINC=7 RYT 45
SPIR 25 60 1
PU
SETHEADING 0
RT 45 |
FD 55
PD
IF :INC < 0 STOP
WALLPAPER ;:INC-1
END

It ean be used as the

Type

TO WALLPAPER : INC
IF :INC=7 [RT 45]
SPIR 25 60 1
PU
SETHEADING 0
RT 45
FD 55
PD
IF :INC <0 [STOP]
WALLPAPER :INC-1
END

—102—

Define the procedure and type

WALLPAPER 7

The computer should respond with something like this.

If we now edit WALLPAPER to WALLPAPER1 with this change to the
second line

IF sINC=21 RT 45 IF :INC=21 [RT 45]

the computer should produce the following drawing if you type

WALLPAPERi 21

—103—

APPLE LOGO

EXERCISES

4.13 Try altering the angle and number of steps in WALLPAPER to
get different effects.

4.14 Make your own patterns with squares and triangles.

4.15 Patience and experimentation will produce some beautiful and
interesting patterns, limited only by your imagination. Try
various stars, reduce the size of the windmill below, change the
windmill pattern so it resembles a flower, and so on.

—104—

SPINNING WINDMILLS

Type

TO WINDMILL :ANGLE
MAKE "TURN 0
REPEAT 360/:ANGLE [BLADE :ANGLE]
END

 the MAKE command
is discussed in
Chapter 5

TO BLADE :ANGLE
CRESCENT
SETHEADING 0
MAKE "TURN :TURN+:ANGLE
RT :TURN
END

TO CRESCENT
REPEAT 20 [FD 5 LT 9]
LT 110
REPEAT 13 [FD 5 RT 4]
END

Define these procedures and type

WINDMILL 60

The computer should respond

—105—

Now try

WINDMILL 17

EXERCISES

4.15 Try some other inputs to WINDMILL: 1, 90, 5, and so on.

4.16 Write a procedure to draw this (call it WHEEL).

Hint: step forward 50 steps, use RCIRCLE 10, then go back 50

steps. Now use a repeat line like that in SPINCIRCLE to spin
this. The above example is WHEEL 45.

—106—

4.17. Use WHEEL 10 to get this:

4.18 Use PENUP to remove the line each time; call this new
Don't forget to put the pen down before using procedure WHEEL1.

RCIRCLE.

—107—

Spin then go back 50 steps.
use RCIRCLE 10, go forward another

Call this new procedure WHEEL2.
25 steps and use RCIRCLE 10 again;
4.19 Now go forward 25 steps,

it as before.

iw I :

‘ bs ?
“fF f ay =

: ‘a : ¥

‘| Fat
am

a if
Sos ry if
Kos yo

© ate, et
va

—108—

4.20 Work this one out for yourself.

IDEAS INTRODUCED IN THIS CHAPTER

Recursion

Stopping recursive procedures

Testing variables in procedures

Sereen modes

SUMMARY OF COMMANDS INTRODUCED IN THIS CHAPTER

MIT LOGO

FULLSCREEN

SPLITSCREEN

CTRL-F

CTRL-S

CTRL-T

PRINT

IF

TEST

IFTRUE, IFT

IFFALSE, IFF

STOP

- ASPECT

APPLE LOGO

FULLSCREEN

SPLITSCREEN

CTRL-L

CTRL-S

CTRL-T

PRINT

IF

TEST

IFTRUE, IFT

- IFFALSE, IFF

STOP

SETSCRUNCH

DESCRIPTION

full sereen drawings

split drawing and text

full sereen from keyboard

split sereen from keyboard

text sereen only

print data on screen
(see Chapter 5)

test and carry out if true

test true or false

carry out if test true

carry out if test false |

stop procedure and
return to calling procedure

used in IF and TEST for
greater, less and equals

assign name to variable
(see Chapter 5).

set vertical aspect ratio

—109—

NAMING THINGS AND
DOING ARITHMETIC

WORKING WITH NUMBERS

LOGO allows you to use the computer like a very powerful pocket
ealeulator. Try it. Type

PRINT 219.305 + 41762.9

The response should be

41982.2

With LOGO you can carry out the following mathematical operations:

+ addition,
- subtraction,
* multiplication,
/ division.

Try the following examples

PRINT 17+11
28

the computer's
response

106

PRINT 53*2

PRINT 8/4
2.

PRINT 8/3
2.66667

—110—

LOGO ean only display the result of a calculation to seven decimal

places.

If we multiply 888888*888888, the answer will be too large to display
in the normal way. Try it. Type

PRINT 888888*888888
7.90121E11

This answer is correct, but it is displayed in a new way. The number
before the E is called the mantissa (i.e. 7.09121 in the example).
The mmber after is called the exponent (i.e. 11 in the example). To
find out what the number is in normal notation, you move the decimal
point in the mantissa to the right, the number of places shown in the

exponent. The number

7.90121E11

becomes

790121000000.0

a very large number indeed.

A similar thing happens for very small numbers.

0.0000130021

becomes

1.30021 N05

when printed by the computer.

The N or negative exponent indicates that the decimal point in the
mantissa is to be moved to the left. The number of places is
indicated by the exponent (i.e. 5 in the example).

More than one arithmetic operation can be carried out on one line.

PRINT 3¥*3*3
27

Additions, subtractions, multiplications, and divisions can be mixed
together.

—111—

PRINT 3*3+6*2/3+1
14.

Before attempting any further examples you should understand the way
in which the computer works out a problem like the one above.

First, all the multiplication and division operations are carried out,
working from left to right. Then all the additions and subtractions
are done, also working from left to right.

Step 1. Multiply 3 by 3 to get 9.
Step 2. Multiply 6 by 2 to get 12.
Step 3. Divide 12 by 3 to get 4.
Step 4. Add the result of step 1 and step 3 to get 13.
Step 5. Add 1 to the result of step 4 to get 14.

Brackets can be used to assist in making the order of operations
clearer. Type

PRINT ((3*3)+((6*2)/2)+1)

The computer should respond

16.

Suppose you wanted to divide 10 by the sum of 2 and 3. The answer you
would expect is 2. Try typing .

PRINT 10/2+3

The computer responds

8.

This is not what we expected. The problem is that, working from left
to right, the division is carried out first. This gives a result of
5. The 3 is added to this to give a final result of 8.

The correct way to write the problem would have been

PRINT 10/(2+3)
2.

In this ease, the calculation in the bracket is carried out first.
The result is 5, which is subsequently divided into 10 to produce a
final result of 2.

—112—

Now try

PRINT 5*(6+4/2)
40.

In this example, the division inside the brackets is carried out
first, then its result added to 6, and the sum is multiplied by 5 to
produce the final result. You should note that the multiplication
sign (*), must be typed before the bracket. This is not the case when
similar statements are written without a computer.

PRINTING TEXT

A more interesting use for PRINT is to display text on the screen.

Type

PRINT [THIS IS A TEST]

The computer should respond

THIS IS A TEST

The result of the PRINT command is that the message in the square
brackets is printed out.

Anything inside square brackets like this is called a list.

PRINT [TODAY IS A GREAT DAY]
TODAY IS A GREAT DAY

PRINT [HELLO BETTY I AM YOUR COMPUTER]
HELLO BETTY I AM YOUR COMPUTER

It would be nice to print several different things on one line, for
example:

PRINT [THE RESULT IS] 4*4

The answer we would like to get is .

THE RESULT IS 16

Type

PRINT [THE RESULT IS] 4*4

and see what the computer response is. The outcome is unexpected and
takes two lines.

—113—

To get the correct response, we must place brackets right around the
PRINT statement. This is necessary whenever more than one item is to
be printed. Type

(PRINT [THE RESULT IS] 4*4)

The response should be

THE RESULT IS 16

The PRINT command can also be used to print out the values of
variables.

MAKE "ANSWER 4
PRINT :ANSWER
4

MAKE "ANSWER "WOOW
PRINT :ANSWER
WOOW

MAKE "ANSWER 4
(PRINT [RESULT IS] :ANSWER)
RESULT IS 4

The PRINT statement can also be used to print blank lines. This is
sometimes useful when you want to provide gaps between different parts
of a printout.

PRINT []

This statement prints a list that contains nothing, and has the effect
of printing a blank line.

NAMING THINGS

Naming is a very important part of LOGO. We have already seen that
the titles we give to procedures become new commands in the language.
For example, once a square-drawing procedure, titled SQUARE, was
defined, we could use it by typing the command SQUARE. This enables
us to build our own versions of the language, containing, as well as
the original LOGO primitives, commands chosen and designed by us.

We have also given names to inputs for procedures. To enable the
square-drawing procedure to make squares of various sizes, we might
use, for example, an input named SIDELENGTH in the procedure
definition.

—114—

As well as these two kinds of naming, LOGO enables us to give names to
items of data in our programming. These data items might be numbers,
words or lists.

We will begin by giving a name to a number. Imagine we have a
procedure in which we want to handle only numbers less than 20. We
want to give the name UPPERLIMIT to the number 20. Type

MAKE "UPPERLIMIT 20

The number 20 is stored in the computer, and the name UPPERLIMIT is
stored in association with that value.

The number 20 is called the THING of the name UPPERLIMIT. Type

PRINT THING "UPPERLIMIT

The computer should respond

20

Now let us name a thing which is itself a word. Type

MAKE "COLOR "GREEN

This gives the name COLOR to the word GREEN. Type

PRINT THING "COLOR

and the computer should respond

GREEN

Similarly we can name a list. Type

MAKE "MESSAGE [THREE BLIND MICE]

The list [THREE BLIND MICE] now has the name MESSAGE. Typing

PRINT THING "MESSAGE

should result in

THREE BLIND MICE

being printed. Note that if you type

PRINT "MESSAGE

—115—

the computer response is

MESSAGE

THING can be abbreviated using a colon sign. (You will remember using
this notation in defining procedures with inputs.) Thus THING
"MESSAGE and :MESSAGE are equivalent. Type

PRINT :MESSAGE

and the response should be

THREE BLIND MICE

Now type

MAKE "COLOR "BLUE
PRINT "COLOR

The computer should respond

COLOR

This is because we have asked it to print the name COLOR.

Now type

PRINT THING "COLOR

The computer should respond

BLUE

This is because BLUE is the THING or value associated with the name
COLOR. If we type

PRINT :COLOR

then the computer will respond

BLUE

At any time we can change the THING (or value) of a name by using
another MAKE statement, such as

MAKE "COLOR "5

Not only have we changed the value of the THING of COLOR, but now the
value is a mimber.

—116—

The MAKE statement is not the only way of changing the value of the
THING of a name. The following two procedures are equivalent.

TO POLYSPI :sSIDE :ANGLE
FORWARD SIDE
RIGHT :ANGLE
POLYSPI :SIDE+2 :ANGLE
END

TO POLYSPI :SIDE :ANGLE
FORWARD SIDE
RIGHT :ANGLE
MAKE "SIDE :SIDE+2
POLYSPI :SIDE :ANGLE
END

The differences are in the ways in which the value of SIDE (its THING)
is changed, but the effect is the same. In the following chapters
both methods are used.

MORE ABOUT THE MAKE COMMAND

We can carry out complex calculations with MAKE, using the rules that
we have already applied for arithmetic.

Type

MAKE "RESULT 4%(3+2)/(3+2)+1
PRINT :RESULT

The result should be

Now type

MAKE “AREA 3¥*3
MAKE "VOL :AREA * 3
(PRINT [VOLUME IS] :VOL

Whoops; we haven't put in the closing bracket in the PRINT statement,
and we will get an error message. We can fix that up by retyping the
line

(PRINT [VOLUME IS] :VOL)

We should now get the correct answer.

VOLUME BS 27

—117—

PRINTING ON THE SAME LINE

The PRINT command causes a new line to be printed each time.
Sometimes you may want to print several results on the same line. For
this you use

PRINT1 TYPE

APPLE LOGO

Type

TO PRINTIT TO PRINTIT
PRINT1 [TODAY IS TUESDAY] . TYPE [TODAY IS TUESDAY]
PRINT [AND IT IS SUNNY] PRINT [AND IT IS SUNNY]
END END

Now define and use the procedure

TODAY IS TUESDAYAND IT IS SUNNY

Note the lack of a space between the two former lists. We will
discuss a solution for this problem in Chapter 6.

After the PRINT1 (or TYPE) command, the computer does not go to the
next line. After the PRINT command it will go to the next line.

GETTING DATA INTO THE COMPUTER

Data values can be entered directly from the keyboard.

Type

MAKE "MYNAME REQUEST MAKE "MYNAME READLIST

The cursor should blink on and off asking you to enter data. You can
then type some data. Finish the data that you have typed by pressing
the RETURN key. The data will be stored with the name "MYNAME. We
could then display on the sereen anything that was typed in. For
example, type

PRINT :MYNAME

—118—_

The result should be

IRVING

which is the data that you typed.

We could also have used REQUEST (or READLIST) in a PRINT statement.

(PRINT [HELLO IM] REQUEST) (PRINT [HELLO IM] READLIST)

The result should be

HELLO I'M JENNIFER

which is the name that you typed.

The REQUEST (or READLIST) statement passes on (outputs) whatever is
typed in, to the operation using it (say a MAKE or PRINT). The data
that REQUEST (or READLIST) gives to any operation is in the form of a
list (i.e. it has square brackets around it, even though you didn't
type them).

What this means is that if you want to type numbers and use them in
calculations, you must use the following kind of statement. (Chapter
6 discusses the use of lists in greater detail.)

MAKE "NUMBER FIRST REQUEST MAKE "NUMBER FIRST READLIST

Now type

45

Then type

(PRINT [DOUBLE BS] :NUMBER*2)

The computer should respond

DOUBLE IS 90

The FIRST command has the effect of removing from the list the number
that you entered. You will have to use this type of statement
whenever you want to enter numbers into the computer with REQUEST (or
READLIST) and use them in ecaleulations. (The use of FIRST is

. explained in more detail in Chapter 6.)

—119—

One way of inputting numbers without having to use FIRST each time is
to write a new procedure, READNUM. Type

TO READNUM TO READNUM
OUTPUT FIRST REQUEST OUTPUT FIRST READLIST
END END

We can now use this procedure instead of REQUEST or READLIST whenever
we want to read in a number from the keyboard. The OUTPUT statement
causes the result of FIRST REQUEST (or FIRST READLIST) to be passed
back to the procedure or statement that called READNUM. Now type

MAKE "NUMBER READNUM

Then type

45

(PRINT [DOUBLE IS] :NUMBER*2)

The computer should respond

DOUBLE JIS 90

We will use READNUM whenever we wish to enter a number from the
keyboard. The use of READNUM illustrates how in LOGO we can define
new commands to suit our own purposes.

USING CALCULATIONS IN PROCEDURES

We can write procedures to carry out arithmetic just as we can use
them for turtle drawings.

Type
TO ADD :NUMBER
PRINT :NUMBER
ADD :NUMBER+1
END

When we have written and defined the procedure, we can use it.

Now type

ADD 1

—120—

The result should be

O

im

Go

Dd

ete.

This procedure will run for a very long time, and you will probably
want to stop it with a CTRL-G command.

ADD works by starting with an input, which in our case was 1. The
first line of ADD prints this input (1). The second line calls ADD
again but with a new input (:NUMBER+1) which will have the value 2.
This will be printed and ADD will be called again with a new input
(:NUMBER+1) which will have the value 3, and so on.

The ADD procedure is similar in many ways to the BACKWARDS procedure
we used for counting backwards in Chapter 4. Notice though that ADD
doesn't have within it a stopping command as BACKWARDS does.

A DOUBLING PROCEDURE

A procedure to double numbers could be written as follows:

TO DOUBLE :NUMBER
MAKE "NUMBER 2*:NUMBER
PRINT :sNUMBER
DOUBLE :NUMBER
END

After the first time through the procedure, we call DOUBLE again, but
this time with twice the value that we started with. You may be
surprised to find that after having doubled the number 128 times (in
about 15 seconds), the computer will signal that the result is too
large and the procedure will stop.

EXERCISES

9-1 Try the doubling procedure and see what happens.

9.2 Change the procedure so that it multiplies the number by
itself each time and see what happens. Call this procedure MULT.
Try MULT with inputs 0, then 1, then 2. What do the different
results mean?

—121—

ANOTHER DOUBLING PROCEDURE

Another variation would be to write a procedure which requests the
numbers to be doubled, one at a time, from the keyboard.

TO DOUBLE1
PRINT [INPUT THE NEXT NUMBER]
MAKE "NUMBER READNUM
(PRINT [DOUBLE IS] 2*:NUMBER)
DOUBLE1
END

When you use DOUBLE], the following dialogue should take place:

You type

DOUBLE1

The computer should respond

INPUT THE NEXT NUMBER

You type

4

The computer responds

DOUBLE IS 8
INPUT THE NEXT NUMBER

and so on.

The trouble with this procedure is that it never stops. It will keep

asking for the next number until you stop it with CTRL-G, or take the
drastic step of turning the computer off. Let us arrange that if you
input a zero you want the procedure to stop. Edit DOUBLE1 to produce
this new version. (Remember that MIT LOGO is on the left and APPLE
LOGO is on the right.)

TO DOUBLE1 TO DOUBLE1
PRINT [INPUT THE NEXT NUMBER] PRINT [INPUT THE NEXT NUMBER]
PRINT [TO STOP ENTER 0] PRINT[TO STOP ENTER 0]
MAKE "NUMBER READNUM MAKE "NUMBER READNUM
TEST :NUMBER =0 TEST :NUMBER=0
IFTRUE PRINT [FINISHED] STOP IFTRUE [PRINT [FINISHED] STOP]
(PRINT [DOUBLE IS] 2*:NUMBER) (PRINT [DOUBLE IS] 2*:NUMBER)
DOUBLE1 DOUBLE1
END END

—122—

The new procedure DOUBLE! will go through the following steps.

1. The first two PRINT statements will cause the following
messages to be displayed on the screen.

INPUT THE NEXT NUMBER
TO STOP ENTER 0

2. The system will then wait until you enter a number to double
and press RETURN.

3. The data that you have input will be given the name NUMBER.

4. The TEST statement will then test the value of the name NUMBER
for zero.

5. If it is zero the IFTRUE statement will be obeyed, FINISHED
will be displayed on the screen and the procedure will stop.

6. If the data weren't zero then the answer will be displayed on
the screen.

7. The call to procedure DOUBLE1 will be obeyed, and the whole
operation will commence again.

8. Note that the brackets around the third PRINT statement are

there because we are trying to print DOUBLE JIS and the value of
2*;sNUMBER both on the same line.

If you don't put in a number at all, but instead try and double
something non-numeric like BETTY, you will get an error message, and
the procedure will stop. Try it. The computer will respond with a
message like

* DOESN'T LIKE BETTY AS INPUT

A LOGO STOPWATCH

We can write in LOGO a procedure that counts seconds. We could slow
it down to run at the speed of a clock. We would then have a
stopwatch that could be started and stopped to time events. Type

TO STOPWATCH :COUNT
PRINT :COUNT
MAKE "COUNT :COUNT+1
STOPWATCH :COUNT
END

—123—

STOPWATCH could also have been written

TO STOPWATCH :COUNT
PRINT :COUNT
STOPWATCH :COUNT+I1
END

Both procedures are identical in the way they work, the only
difference being the way that :COUNT is modified. Now define the
procedure with CTRL-C. Type

STOPWATCH 0 but don't type RETURN yet.

Keep your finger on the RETURN key and depress it the instant you want
the clock to start.

To stop the procedure, keep one finger on CTRL and another one poised

to press G the instant you want to stop the clock.

When you run STOPWATCH you will find three obvious faults, and perhaps

some others as well.

1. STOPWATCH goes too fast.

2. When it gets to 60 seconds it just goes on to 61 seconds,
rather than counting in minutes and seconds.

3. Having the numbers run up the screen is annoying.

The first problem can be solved by putting in a delay each time we go
through the procedure. If the time for the computer to go through the
procedure once, plus the delay we introduce, adds up to 1 second then
our stopwatch will be calibrated correctly.

A suitable method for introducing the delay is to use a REPEAT
statement.

REPEAT 100[]

This will repeat what is in the square brackets 100 times. The fact
that there is nothing in them won't worry us since it will simply
create a small delay each time. The number of repeats that we have
chosen might however be wrong; it might be too small or too large.

—124—

Now edit the procedure to get:

TO STOPWATCH :COUNT
MAKE "COUNT :COUNT+1
REPEAT 100 []
PRINT :COUNT
STOPWATCH :COUNT
END

You will now have to run STOPWATCH a number of times, checking it with
your wristwatch and changing the value in REPEAT each time until you
have it operating accurately.

USING RANDOM NUMBERS

When you throw a die there is an equal chance that any one of the
faces will come up. The same occurs with a coin; if you toss a coin
it has the same chance of coming up heads or tails. If you earry out,
Say, 50 tosses you will see that the number of heads will be nearly
the same as the number of tails. Computers can produce numbers which
simulate the random nature of throwing dice and coins.

To use the random number generator in LOGO we can type

PRINT RANDOM 100

The response might be

32

What is happening is that the computer is producing a number chosen at
random between 0 and 99 inclusive. Each number between 0 and 99 has
the same chance of being chosen. Try using RANDOM 100 several times
to see what happens.

PRINT RANDOM 100
29

PRINT RANDOM 100
81

PRINT RANDOM 100
3

If we used RANDOM 6, then we would get numbers between 0 and 5.

Computer generated random numbers can be used in games and
simulations. For example, we can write a procedure that simulates the
tossing of a coin. This procedure will tell us whether we have thrown
a head or tail.

—125—

TO TOSS TO TOSS
MAKE "FLIP RANDOM 2 MAKE "FLIP RANDOM 2
TEST :FLIP=0 TEST :FLIP=0
IFTRUE PRINT [HEADS] STOP IFTRUE [PRINT [HEADS] STOP]
PRINT [TAILS] STOP PRINT [TAILS] STOP
END END

When we use the procedure TOSS we will get either a HEAD or a TAIL.
It runs in the following fashion:

1. RANDOM is asked to pass on to the MAKE statement a number
which is either 0 or 1. We shall call 0 a HEAD and 1 a TAIL.

2. The name FLIP is assigned to the random number produced from
RANDOM.

3. We test FLIP to see if it is 0.

4. If it is TRUE that FLIP is 0, the computer prints out that it
is a HEAD, and stops.

5. If it is FALSE that it is a 0, then TAILS is printed and the
procedure then stops. Note that we don't have to specifically
ask IFFALSE, because what is not true must be false.

RANDOMIZING RANDOM NUMBERS
(APPLE LOGO USERS SKIP THIS SECTION)

For a single session with MIT LOGO, RANDOM will produce randomly
chosen numbers. Each time you start MIT LOGO, though, you will get
the same sequence of numbers. To get a different sequence each time
you must type RANDOMIZE before you use RANDOM the first time.

RANDOMIZE

COUNTING HEADS AND TAILS

We might want to write a set of procedures to count the numbers of
heads and tails that occur in, say, 100 tosses. We would need to
carry out the following steps:

1. Set a counter to zero for the running total of heads.

2. Do the same thing for counting tails.

—126—

Type

Now

3. Toss the coin (generate the random number), 100 times.

For each toss the procedure would have to determine whether the
outcome was a head or a tail, and add 1 to either the heads
sub-total or to the tails sub-total.

4. Following the 100 tosses, the computer would print out the
numbers of heads and tails.

TO COUNTTOSS
MAKE "HEADS 0
MAKE "TAILS 0
REPEAT 100 [ADDUP]
(PRINT [THE NUMBER OF HEADS WAS] :HEADS)
(PRINT [THE NUMBER OF TAILS WAS] :TAILS)
END

type the ADDUP procedure. (Remember MIT LOGO is on the left and

APPLE LOGO is on the right.)

TO ADDUP TO ADDUP
MAKE "FLIP RANDOM 2 MAKE "FLIP RANDOM 2
TEST :FLIP = 0 TEST :FLIP = 0
IFTRUE MAKE "HEADS :HEADS+1 IFTRUE [MAKE "HEADS :HEADS+1]
IFFALSE MAKE "TAILS :TAILS+1 IFFALSE [MAKE "TAILS :TAILS+1]
END END

Define the procedure and use it.

COUNTTOSS

The computer will respond with an answer that may be different each
time you run COUNTTOSS.

For example

THE NUMBER OF HEADS WAS 53
THE NUMBER OF TAILS WAS 47

1. The procedure COUNTTOSS reflects the earlier outline of the
problem. We could write COUNTTOSS without worrying about the
details of ADDUP until we came to write it later.

—127—

2. The LOGO segment:

TEST :FLIP=0 TEST :FLIP=0
IFTRUE MAKE "HEADS :HEADS+1 IFTRUE [MAKE "HEADS :HEADS+1]
IFFALSE MAKE "TAILS :TAILS+1 IFFALSE[MAKE "TAILS :TAILS+1]
END END

could have been replaced by:

TEST :FLIP=0
IFTRUE MAKE "HEADS :HEADS + 1 STOP
MAKE "TAILS :TAILS+1

TEST :FLIP = 0
IFTRUE [MAKE "HEADS :HEADS + 1 STOP]
MAKE "TAILS :TAILS + 1
END

The STOP statement stops the current procedure and returns to the
calling procedure (COUNTTOSS).

EXERCISES

5.3 Modify the stopwatch procedure so that it counts in minutes
and seconds.

5.4 Write a set of procedures to throw two dice and to print out
the two numbers that come up.

5.5 Modify exercise 5.4 so that it will throw the dice 100 times
and print out how many times each of the faces 1 through 6 comes
up. Hint: you should be able to use the procedure you wrote in
exercise 5.4.

STANDARD NUMERIC PROCEDURES

The following procedures are provided as part of the LOGO system for
carrying out numeric operations. If you don't know about trigonometry
and square roots then you should skip to the end of the chapter.

The Cosine of an Angle:

This procedure outputs the cosine of an angle expressed in degrees.

COS :ANGLE

—128—

Now type

PRINT COS 45

The computer will respond

(07107

The Sine of an Angle:

SIN outputs the sine of an angle expressed in degrees.

Type

PRINT SIN 90

The computer will respond

1.

The Tangent of an Angle:

The Tangent of an angle can be found from the procedure:

TO TAN :ANGLE
PRINT (SIN :ANGLE)/(COS :ANGLE)
END

Getting the Integer Part from a Real Number:

This procedure outputs the whole number part of a real number; in
other words, everything after the decimal point is lost.

INTEGER :sNUMBER INT :sNUMBER

Now type

PRINT INTEGER 10.1 PRINT INT 10.1

The result should be

10 10

Also try typing

PRINT INTEGER -10.9 PRINT INT -10.9

—129—

The result should be

-10 -10

Finding the Square Root:

The SQRT procedure outputs the square root of its input. Type

PRINT SQRT 4

The result should be

2.

Now type

PRINT SQRT 5

The result should be

2.23607

The radius of a circle can be found if we know its area. A procedure
for doing this follows.

TO GETRADIUS :AREA
OUTPUT SQRT :AREA/3.14159
END

OUTPUT causes the
result to be passed
back to the PRINT

com mand

To use the procedure we could type

PRINT GETRADIUS 10

The computer should respond with the radius

1.78412

The Aretangent of an Angle:

This command outputs the arctangent of two sides of a triangle in
degr ees.

ATAN :A :B ARCTAN :A/:B

—130—

Note that a complete list of mathematical functions is contained in
Appendix A.

A MATHEMATICAL PROJECT

Pythagoras showed us that the length of the longest side of a
right-angled triangle can be found by:

h*7 =a? +p?

A LOGO procedure to calculate the length of the longest side of a
right-angled triangle could be written this way. Type it.

TO PYTHAGI :A sB
MAKE "H SQRT :A*:A + :B*:B
PRINT :H
END

To use the procedure type

PYTHAGI 3 4

The computer should respond

5.

Another way of writing this procedure would be to type

TO PYTHAG?2 :A :B
OUTPUT SQRT :A*:A + :B*:B
END

PYTHAG2 is more general than PYTHAGI1 since, because of the OUTPUT

—131—

command, the result of PYTHAG2 can be passed to another procedure
(such as PRINT) and used. This is demonstrated in the next section.

A MORE ELABORATE TRIANGLE CALCULATION PROCEDURE

We will write a procedure called CALCSIDE which reads the lengths of
two sides of a right-angled triangle from the keyboard, then
caleulates and prints the length of the hypotenuse. CALCSIDE will
keep doing this until a side of zero length is read for the first
number.

TO CALCS IDE TO CALCS IDE

PRINT1 [FIRST SIDE?] TYPE [FIRST SIDE?]
MAKE "A READNUM MAKE "A READNUM
TEST :A =0 TEST :A =0

IFTRUE PRINT [END] STOP IFTRUE [PRINT [END] STOP]
PRINT1 [SECOND SIDE?] TYPE [SECOND SIDE?]
MAKE "B READNUM MAKE "B READNUM
PRINT1 [HYPOTENUSE] TYPE [HYPOTENUSE]
PRINT PYTHAG2 :A :B PRINT PYTHAG2 :A :B
CALCS IDE CALCS IDE
END END

Now type

CALCSIDE

The computer should respond

FIRST SIDE 23
SECOND SIDE ?4

the data
that you
typed

The computer will now calculate the length of the third side

HYPOTENUSES5
FIRST SIDE?0
END

Cem

—132—

DRAWING OUR TRIANGLE

The real power of using OUTPUT to return a result to a calling
procedure is that we can use the result any way we want to.

If we modify CALCSIDE by including a call to a new procedure TRIDRAW
then we can draw the resulting triangle on the screen. Edit CALCSIDE
to produce:

TO CALCSIDE1 TO CALCSIDE1
PRINT1 [FIRST SIDE?] TYPE [FIRST SIDE?]
MAKE "A READNUM MAKE "A READNUM
TEST :A=0 TEST :A=0
IFTRUE PRINT [END] STOP IFTRUE [PRINT [END] STOP]
PRINT1 [SECOND SIDE?] TYPE [SECOND SIDE?]
MAKE "B READNUM MAKE "B READNUM
MAKE “H PYTHAG2 :A :B MAKE "H PYTHAG2 :A :B
DRAW CLEARSCREEN
(PRINT [HYPOTENUSE] :H) (PRINT [HYPOTENUSE] :H)
RT 90 RT 90
TRIDRAW :A ;:B :H TRIDRAW ;:A :B :H
END END

Now type:

TO TRIDRAW :A :B :H TO TRIDRAW :A :B :H
FD :A FD :A
LT 90 LT 90
FD :B FD ;:B
LT 180-ATAN :A :B LT 180-ARCTAN ;:A/:B

FD :H FD :H
END END

TRIDRAW works in the following way:

1. It takes three inputs (the sides of the triangle).

2. It draws the first two sides with the right angle between
them.

3. To draw the final side it must turn through the outside angle.
The inside angle is found by arctan :A/:B, therefore the outside
angle is 180-arctan :A/:B.

CALCSIDE1
FIRST SIDE?30 < you type
SECOND SIDE?40

—133—

Now type

HYPOTENUSE 50

The computer should now draw the triangle.

Change TRIDRAW as shown below to make

some interesting drawings.

TO TRIDRAW :A :B :H TO TRIDRAW :A
FD :A FD :A
LT 90 LT 90
FD :B FD :B
LT 180-ATAN :A :B LT 180-ARCTAN
FD :H FD :A
TRIDRAW :A :B :H TRIDRAW :A :B
END END

:-<B :H

A/:B

:H

Now that you have made this change to TRIDRAW, use the CALCSIDE1
procedure and see what happens. The following pictures were made by
trying various changes to CALCSIDE1 and TRIDRAW.

—134—

ih

I hit HL ‘eat

/

EXERCISES

5.6 Write a procedure that outputs the area of a circle given the

formula

AREA=3.1416* RADIUS* RADIUS

—135—

The procedure is to be called AREACIRCLE and should work as
follows.

PRINT AREACIRCLE 1
THE AREA OF A CIRCLE RADIUS 1 IS 3.1416

5.7 Write a procedure called BUBBLES that draws small circles
randomly around the screen like this.

a ff (3a CO)

Hint: use RCIRCLE from Chapter 4 with an input of 10 to draw the
circles. BUBBLES will work as follows.

1. Draw a circle.

2. Turn the turtle right through an angle of between 0 and
360 degrees (RT RANDOM 361)

3. Move the turtle forward a random number of steps between
0 and 200 (FD RANDOM 201)

4. Make a recursive call to BUBBLES again.
BUBBLES will go on forever, so you will want to stop it with
CTRL-G.

—136—

9.8 Modify BUBBLES and call it FLOWERS to produce something like
this.

Hint: you will need to replace RCIRCLE with another procedure (a
poly) that looks like a flower (have a look at Chapter 4). The
poly must be one that stops when its shape is complete.

—137—

9-9 Now modify FLOWERS to produce STARS. Hint: try a different
poly.

5.10 Now write SNAKE.

P
r

e
s

SORE
i
e
s

a

a
t
t
a
?

O
E

SOND z

—138—

SNAKE works as follows.

1. Draw a circle (use RCIRCLE 10).

2. Select a random number between 0 and 1. If it is 0 then
turn the turtle to the right a random number of degrees
between 0 and 35. If it is 1 then turn the turtle to the
left in the same way.

3. Move the turtle forward 10 steps.

4. Recursively call SNAKE.

9.11 Modify SNAKE to use small squares.

9.12 For the more mathematically inclined. A quadratie equation
of the form

ax? + bx +e

can be solved by the formula

-p +\ b2 — dae pb -N b? - 4ac
2a 2a

Write a procedure to output the solution of a quadratic
equation.

5.13 For the more adventurous. Write a set of procedures that
allow you to test a student's arithmetic ability. Read from the
keyboard the number of additions that the student requests. Then
for each addition select two random numbers to add. Ask the
student what the result is, and give him or her three tries to
get it right. When the specified number of additions have been
completed, print out the percentage of correct answers.

0-14 Modify 5.13 so that the student is asked whether he or she
wants additions, subtractions, multiplications or divisions.

—139—

IDEAS INTRODUCED IN THIS CHAPTER

Arithmetie operations in LOGO

Exponential notation

Printing text and numbers

Naming things

Data input from the keyboard

Delays to control timing in procedures

Random numbers

Standard mathematical procedures in LOGO

Passing results from a sub-procedure back to its calling procedure

—140—

SUMMARY OF COMMANDS INTRODUCED IN THIS CHAPTER

MIT LOGO

PRINT, PR

MAKE

THING, :

tf

REQUEST

PRINT1

OUTPUT

+-/*

RANDOM

COs

SIN

INTEGER

SQRT

ATAN

APPLE LOGO

PRINT, PR

MAKE

THING, :

tt

READLIST

TYPE

OUTPUT

+-/*

SIN

INT

SQRT

ARCTAN

DESCRIPTION

print list, word or number

assign name to value

value of name

name (e.g. "YELLOW)

read a list from the keyboard,
terminate with RETURN

Same as print but remains on same
line

stops procedure and returns
value to calling procedure

arithmetic operations

output random number

cosine

sine

output whole number

square root

arctangent

—141—

6 RECURSION AND LISTS

PROGRAMMING WITH LISTS

If we wished to display the message

WHAT IS TODAY'S DATE?

on the sereen we could use a statement like

PRINT [WHAT IS TODAY'S DATE?]

The sentence enclosed in the square brackets is called a list.

The list is made up of elements. Each element may be a word, such as
WHAT in the above example, a number or another list. Each of the
elements of a list must be separated from the others by a space.

[17.3 21 [THIS IS A LIST] 27]

The list above consists of four elements. Three of these are numbers
(17.3, 21, 27) and the fourth is another list (THIS IS A LIST), which
itself contains four elements.

Now type

PRINT [17.3 21 [THIS IS A LIST] 27]

The computer should respond

17.3 21 [THIS IS A LIST] 27

—142—

LOGO contains a number of statements to allow us to examine and modify
lists. Lists are particularly useful if we want to process English
language text.

JOINING LISTS TOGETHER

The SENTENCE command can be used to join two lists. Type

PRINT SENTENCE [TODAY'S DATE IS][THE THIRD OF JUNE]

SENTENCE outputs a single list, so we could have statements like

MAKE "A SENTENCE [TODAY'S DATE IS]ITHE THIRD OF JUNE]
PRINT :A

The computer should respond

TODAY'S DATE IS THE THIRD OF JUNE

Now type

MAKE "A [WHAT IS TODAY'S DATE?]
MAKE "B [THE THIRD OF JUNE]
PRINT SENTENCE :A 3B

The computer should respond

WHAT IS TODAY'S DATE? THE THIRD OF JUNE

A more realistic example might involve having the date read from the
keyboard each time we use the procedure. Type

TO PRINTDATE TO PRINTDATE
PRINT1 [INPUT THE DATE] TYPE [INPUT THE DATE]
MAKE "DATE REQUEST MAKE "DATE READLIST
PR SENTENCE[THE DATE IS]:DATE PR SENTENCE[THE DATE IS]:DATE
END END

PRINTDATE can now be used by typing

PRINTDATE

The computer will respond

INPUT THE DATE

—143—

You can now enter the date from the keyboard on the same line, and

terminate it with RETURN; for example:

INPUT THE DATE THE THIRD OF JANUARY

the computer Cou ‘ype)
types

The computer should respond

THE DATE IS THE THIRD OF JANUARY

JOINING MORE THAN TWO LISTS TOGETHER WITH SENTENCE

SENTENCE can join more than two lists if you enclose it and the lists
in brackets. SENTENCE can also be abbreviated SE. Type

MAKE "DATE REQUEST MAKE "DATE READLIST

Enter the date, terminated by RETURN
This can now be printed out

PR (SE [TODAY'S DATE IS] :DATE [AND IT'S WET))

The computer should respond

TODAY'S DATE IS THE FIRST OF FEBRUARY AND IT'S WET

the date
you entered

LOOKING INTO LISTS

The statements FIRST, LAST, BUTFIRST and BUTLAST allow the elements of
a list to be examined individually.

Type

MAKE "A [TODAY IS SUNNY]
PRINT FIRST :A

The computer should respond

TODAY

—144—

Type

PRINT LAST :A

The computer should respond

SUNNY

Type

PRINT BUTFIRST :A

The computer should respond

IS SUNNY

Type
PRINT BUTLAST :A

The computer should respond

TODAY IS

FIRST, LAST, BUTFIRST and BUTLAST by themselves don't allow us to

look at the middle of a list. To do this we must write a procedure.

Type

TO EXAMINELIST :A TO EXAMINELIST :A
TEST :A=[] TEST :A=[]
IFTRUE STOP IFTRUE [STOP]
PRINT FIRST :A PRINT FIRST :A
EXAMINELIST BUTFIRST :A EXAMINELIST BUTFIRST :A
END END

To use this procedure, type

EXAMINELIST [TODAY IS SUNNY]

The computer should respond

TODAY
IS
SUNNY

Let us look at how this procedure works. Once you understand this you
will be a long way towards understanding lists and how to use them.

1. The procedure begins with a list as input [TODAY IS SUNNY].

--145—

2. The first and second statements check whether the list is
empty. This is done by checking the list that has been input
against the empty list []. The first time through, the list that
has been input will not be empty; it contains three elements
[TODAY IS SUNNY].

3. The next statement prints out the first element of the list,
TODAY.

4. We then call EXAMINELIST again but with a new input. The
input is BUTFIRST :A. BUTFIRST outputs everything but the first
element of a list, in this ease :A. What happens then is that
EXAMINELIST is ealled with a new list [IS SUNNY].

5. This will be continued. Each time EXAMINELIST will be called
with everything but the first element it was called with last
time. Finally EXAMINELIST will be called with an empty list [].
This will be detected by TEST, and the procedure will STOP.

Instead of using FIRST and BUTFIRST we could have used LAST and
BUTLAST. Type

TO EXAMINELIST1 :A TO EXAMINELIST1 :A
TEST :A=[] TEST :A=[]
IFTRUE STOP IFTRUE [STOP]
PRINT LAST :A PRINT LAST :A
EXAMINELIST1 BUTLAST :A EXAMINELIST1 BUTLAST :A
END END

Then use this procedure with the input [TODAY IS SUNNY]. Type

EXAMINELIST1 [TODAY IS SUNNY]

The computer prints

SUNNY
Is
TODAY

LAST takes the last element of a list, and BUTLAST takes everything
but the last element of a list. Using these four statements (FIRST,
LAST, BUTFIRST, BUTLAST), some interesting effects can be produced.

—146—

Type this

TO PRETTYLIST :A TO PRETTYLIST :A
TEST :A=[] TEST :A=[] |
IFTRUE STOP IFTRUE [STOP]
PRINT :A PRINT :A
PRETTYLIST BUTFIRST :A PRETTYLIST BUTFIRST :A
END END

Now use this by typing

PRETTYLIST [TODAY IS SUNNY]

The computer prints

TODAY IS SUNNY
IS SUNNY
SUNNY

This procedure works in a similar way to EXAMINELIST.

1. The procedure starts off by seeing whether the list that has
been input is empty.

2. If it's not empty the procedure prints the list that has been
input. The first time through TODAY IS SUNNY will be printed.

3. A new copy of PRETTYLIST is called with everything but the
first element, (IS SUNNY]. This will be printed and then
PRETTYLIST will be called again with everything but the first
element of the present list, [SUNNY].

4. The next time BUTFIRST [SUNNY] will cause PRETTYLIST to be
called with the empty list []. This will be detected and the
process will STOP.

EXERCISES

6.1 Using the same list [TODAY IS SUNNY], write down what would
be the effect of replacing BUTFIRST with BUTLAST in PRETTYLIST.
Now edit PRETTYLIST with this change and see what happens.

6.2 Try PRETTYLIST out with different lists, including some that
go over one line.

(Remember that when you type a line that goes over the edge of
the screen, you just keep typing. Don't use the RETURN key until
the statement is finished. At the end of a screen line APPLE

—147—

LOGO places a ! character. This is to tell you that your
statement has wrapped around to the next line on the screen.)

6.3 Edit PRETTYLIST and EXAMINELIST with different combinations
of LAST, FIRST, BUTLAST and BUTFIRST, to see what happens.

A MORE RECURSIVE PROCEDURE

If we add a second PRINT statement to the PRETTYLIST procedure we get
rather a different result. Edit PRETTYLIST so that it becomes.

TO PRETTYLIST :A
TEST :A=[]
IFTRUE STOP
PRINT :A
PRETTYLIST BUTFIRST :A
PRINT :A
END

Now use PRETTYLIST. Type

TO PRETTYLIST :A
TEST :A=[]
IFTRUE [STOP]
PRINT :A
PRETTYLIST BUTFIRST :A
PRINT :A
END

the new statement
PRETTYLIST [TODAY IS SUNNY]

The computer should respond

TODAY IS SUNNY
IS SUNNY
SUNNY
SUNNY
IS SUNNY
TODAY IS SUNNY

To explain what happens we must understand the principle of recursion.
You should trace this explanation with Figure 6.1.

—148—

PRETTYLIST (TODAY IS SUNNY)

TO PRETTYLIST :A :A IS (TODAY IS SUNNY)

 TEST :A = () FALSE
IFTRUE STOP
PRINT :A LINE 1 TODAY IS SUNNY
PRETTYLIST BUTFIRST :A BUTFIRST :A IS (IS SUNNY)
PRINT :A LINE 6 TODAY IS SUNNY

TO PRETTYLIST :A :A IS (IS SUNNY)
TEST :A = () FALSE
IFTRUE STOP
PRINT :A LINE 2 IS SUNNY
PRETTYLIST BUTFIRST :A BUTFIRST :A IS (SUNNY)
PRINT :A LINE 5 [IS SUNNY
END

TO PRETTYLIST :A :A IS (SUNNY)
TEST :A = () FALSE
IFTRUE STOP
PRINT :A LINE 3 SUNNY
PRETTYLIST BUTFIRST :A BUTFIRST :A IS ()
PRINT :A LINE 4 SUNNY
END

TO PRETTYLIST :A :A IS ()
TEST :A = () TRUE
IFTRUE STOP
PRINT :A
PRETTYLIST BUTFIRST :A
PRINT :A
END

Figure 6.1 PRETTYLIST

a) We call PRETTYLIST with an input [TODAY IS SUNNY]. The value

of A is [TODAY IS SUNNY].

b) The value of A is not [] (empty) so the test is FALSE.

—149—

ec) TODAY IS SUNNY is printed.

d) PRETTYLIST is called again, but with BUTFIRST :A , [IS SUNNY]

e) We now proceed to step 8, to a new copy of PRETTYLIST, with an
input [IS SUNNY]. The value of A in this copy is [IS SUNNY].

f) Steps 9, 10, and 11 determine that the value of A is not [],
so line 2 is printed IS SUNNY.

g) We now eall a third copy of PRETTYLIST with an input of
BUTFIRST :A, [SUNNY].

h) In this third copy the value of the input (A) is [SUNNY].

i) Steps 16, 17, and 18 as before test for an empty A and print
the value of the current A. SUNNY is printed.

j) A fourth copy of PRETTYLIST is called with BUTFIRST :;A, [].

k) In this fourth copy the value of its input (A) is [J]. The
test at step 23 determines that this is true and line 24 stops
the fourth copy of PRETTYLIST.

1) A STOP statement terminates the current procedure (copy four
of PRETTYLIST), and returns to the calling procedure (copy 3 of
PRETTYLIST), at step 20 (the one after the call to the fourth
copy of PRETTYLIST).

m) The next statement (step 20) is PRINT :A. The value of A in
copy three is [SUNNY], so SUNNY is printed.

n) The next statement (step 21) is END. This acts like STOP and
returns us to the ealling procedure (copy two of PRETTYLIST).
Both STOP and END have the effect of returning to the calling
procedure, at the next statement to be executed in that procedure
(the statement after the call). See that step 20 returns to step
13.

o) The next statement executed is step 13 (PRINT :A). The value
of A in this copy of PRETTYLIST is [IS SUNNY] so this is
printed.

p) The END statement in line fourteen returns us to line 6 in the
original copy of PRETTYLIST. The value to be printed here is
TODAY IS SUNNY.

q) The END at line 7 returns us to the command level and the
process is complete.

—150—

When we use recursion we only use our original procedure. LOGO
handles the creation of new copies automatically, and destroys them
when they are no longer of use. You should also remember that in the
new copy of a procedure all the values associated with the names are
new as well. Note that in PRETTYLIST the value of A is that in the
current copy of the procedure.

The original version of PRETTYLIST printed the following.

TODAY IS SUNNY
IS SUNNY
SUNNY

and then finished. This can be explained in the following way. The
first three lines are printed exactly as in our previous example.
When A has a value of [] (the list is empty), the STOP statement
returns us to the calling procedure (copy three). The next statement
in this procedure is END. This returns us to the END in copy two,
which returns us to the END in copy one, and back to the command
level. Nothing more is printed after the third line; the procedure
simply unwinds back to the beginning.

FINDING AN ELEMENT OF A LIST

Using recursion we can write procedures that manipulate lists in
different ways. For example we can write a procedure to find out
whether a particular number or word is contained in a list.

To set up the list we can use a MAKE statement.

Type

MAKE "OURLIST [1 7 THREE SUNNY MONDAY]

To write a set of procedures that will find out whether a number or

word that we have read from the keyboard is an element in a list,

type

TO FIND
PRINT [YOUR GUESS 2]
MAKE "GUESS REQUEST
TEST :GUESS =[] ¢—{ MIT LOGO
IFT STOP
TEST SEARCH :GUESS :OURLIST="TRUE
IFT PRINT [IN THE LIST]
IFF PRINT [NOT IN THE LIST]
PRINT []
FIND
END

—151—

TO FIND APPLE LOGO
PRINT [YOUR GUESS 2]
MAKE "GUESS READLIST
TEST :GUESS = []
IFT [STOP]
TEST SEARCH :GUESS :OURLIST = "TRUE
IFT [PRINT [IN THE LIST]]
IFF [PRINT [NOT IN THE LIST]]
PRINT{[]
FIND
END

At this stage we haven't yet defined the procedure SEARCH. What we
have done is to define our top level procedure FIND, in which we have
said exactly what we want SEARCH to do. We have also indicated what
inputs SEARCH will have, and what it will OUTPUT to the calling
procedure FIND. This approach enables us to state what we want to do
in a procedure (such as SEARCH) before it has been written.

TO SEARCH :A :B TO SEARCH :A :B

TEST :B=[] TEST :B=[]
IFTRUE OUTPUT "FALSE IFTRUE [OUTPUT "FALSE]
TEST FIRST :A=FIRST ;:B TEST FIRST :A=FIRST :B

IFTRUE OUTPUT "TRUE IFTRUE [OUTPUT "TRUE]
OP SEARCH :A BF :B OP SEARCH :A BF :B
END END

Note the abbreviations for OUTPUT and BUTFIRST

Now type

FIND

The computer should respond

YOUR GUESS ?
FIVE

 your response

The computer should now respond

NOT IN THE LIST

YOUR GUESS ?

—152—

Try this procedure with other values. We will now look at how these
procedures work.

1. Firstly the computer reads in our guess. If we have pressed
RETURN without entering any data, then it will read an empty list
(J. The first TEST statement will detect this and the procedure
will stop. If we have entered data to process, the computer will
use the TEST statement to determine whether the data is in the
list. It tests the output from the SEARCH procedure. SEARCH
will output either TRUE or FALSE, depending on whether the
element is in the list or not. If the output from SEARCH is
TRUE, the message IN THE LIST is printed by the FIND procedure.
If the output from SEARCH is FALSE, the message NOT IN THE LIST
is printed by FIND. Then the computer will call FIND again to
get another guess.

2. SEARCH is ealled in the TEST statement with two inputs. The
first is our guess and the second is the list the computer is
going to search.

3. SEARCH works by testing our guess against the first element.
If it does not match, the procedure goes back and does it again
with everything but the first element, OUTPUT SEARCH :A BUTFIRST
:B. Note that when we are using recursion and the procedure
outputs a value to a calling procedure, then the recursive call
itself should include OUTPUT, as in this case. This is because
when the last copy finally ends it must output values all the way
back to the beginning (see figure 6.1).

4. So the first thing that SEARCH does is to test for an empty
list, J. If the list is empty, then we haven't found the
element and SEARCH terminates and outputs FALSE.

5. If the guess is found, the search terminates and outputs
TRUE,

AN ALTERNATIVE FIND PROCEDURE

In our previous FIND procedure the computer read the guess from the
keyboard, and the procedure ran until it read in a null list (a line
with only a RETURN in it.) We will write a new procedure (FIND1)
which will be called with an input (the guess).

—153—

Type

TO FIND1 :GUESS
TEST :GUESS=[]
IFT STOP
TEST SEARCH :GUESS :OURLIST="TRUE
IFT (PR :GUESS [IN LST)
IFF (PR :GUESS [NOT IN LIST))
END

TO FIND1 :GUESS APPLE LOGO
TEST :GUESS =[]
IFT [STOP]
TEST SEARCH :GUESS :OURLIST="TRUE
IFT (PR :GUESS [IN LIST))]
IFF ((PR :GUESS [NOT IN LIST])]
END

Notice the use of abbreviations, IFF for IFFALSE, IFT for IFTRUE and PR
for PRINT.

Now type

FINDI[SUNNY]

The computer should respond

SUNNY IN LIST

EXERCISES

6.4 Build a new list with the name MYLIST. Run FIND and FIND1 so
they use :MYLIST instead of ;OURLIST.

6.5 Modify FIND and FIND1 so they will use any list that you
name. Hint: pass the name of the list as an input to the
procedure.

BUILDING LISTS

A way of extending lists is to use the SENTENCE statement. Type

PRINT :OURLIST

The computer should respond

1 7 THREE SUNNY MONDAY

—154—

Now type

MAKE “OURLIST SENTENCE :OURLIST [WET TUESDAY]

PRINT :OURLIST

The computer should respond

1 7 THREE SUNNY MONDAY WET TUESDAY

The SENTENCE (abbreviated SE) command can be used to combine two lists
into a longer list.

Another way of building a list would be to write a procedure designed
to do it. Type

TO BUILDLIST :NAME TO BUILDLIST :NAME
PRINT1 [NEXT ELEMENT>>] TYPE[NEXT ELEMENT>>]
MAKE "NEXT REQUEST MAKE "NEXT READLIST
TEST :NEXT=[] TEST :NEXT=[]
IFTRUE OUTPUT :NAME IFTRUE[OUTPUT :NAME]
MAKE "NAME SE :NAME :NEXT MAKE "NAME SE :NAME :NEXT
OUTPUT BUILDLIST :NAME OUTPUT BUILDLIST :NAME
END END

The procedure BUILDLIST will add onto an existing list. If you wish
to start with an empty (or new) list, type

MAKE "THISLIST []

prior to using BUILDLIST. This can be used with any method of
building lists (such as SENTENCE). The name of the empty list we have
just created is "THISLIST. Type

MAKE "“THISLIST BUILDLIST :THISLIST

The computer should respond

NEXT ELEMENT>>

You now enter the elements, one at a time, and after each one press
RETURN. When you are finished press RETURN without typing anything
else. Then type

PRINT :THISLIST

The list that you have created will be printed. You can use any name
you like for the new list.

—155—

EXERCISES

6.6 Modify BUILDLIST so that it will only add an element if it is
not already present in the list. Hint: you will need a new
procedure FIND2. Only if the result from FIND2 is FALSE do you
add the element to the list. If the result is TRUE the element
is already in the list. You will also need to use a version of
FIND2 that will accept the name of the list that you are using.

EXPLORING WORDS

In an earlier chapter we met the idea of a word. For example we can

type

PRINT "HELLO

The computer should respond by printing the word

HELLO

We could type

PRINT [HELLO]

The computer will still respond

HELLO

In both cases HELLO is a word. In the second example it is the only
element of a list. Notice that when a word is used in a list we do
not have to type the double quote character ("), A word can be made
up of alphabetic or numeric characters or a mixture of both. A word
cannot contain a space.

These are words:

"ABC
"GOODBYE
"123

Words that are numbers do not have to have quotes in front of them.

123

is the same as

"123

—156—

Now type

PRINT 10+"10

The computer should respond

20

Just as with lists we had a SENTENCE command, for handling words we
have WORD. Type

PRINT WORD "NO "TIME

The computer should respond

NOTIME

Two separate words have been joined into a single word.

The statements FIRST, LAST, BUTFIRST and BUTLAST also work on words.
Type

PRINT FIRST "BILL

The computer should respond

B

Type

PRINT LAST "BILL

The computer should respond

L

We can write procedures to manipulate words. These work in an almost
identical fashion to those we used with lists. Type

TO EXAMINEWORD :A TO EXAMINEWORD :A
TEST :A=" TEST :A="
IFTRUE STOP IFTRUE [STOP]
PRINT FIRST :A PRINT FIRST :A
EXAMINEWORD BUTFIRST :A EXAMINEWORD BUTFIRST :A
END END

We use the procedure with an input that is a word. Type

EXAMINEWORD "FRIDAY

—157—

The computer should respond

The only difference in the form of the procedure from that of our list
processing procedures is that we have tested for the empty word (")
instead of the empty list ([]).

EXERCISES

6.7 Modify PRETTYLIST so that it works with words rather than
lists. Call the new procedure PRETTYWORD. Test both forms of
PRETTYLIST.

6.8 Modify FIND and SEARCH so that they work with words. Call
these new procedures FINDW, and SEARCHW.

6.9 Modify EXAMINEWORD to use various combinations of LAST,
BUTLAST, FIRST and BUTFIRST.

GETTING A NUMBER FROM A LIST

In Chapter 5 we used the statement

MAKE "NUMB FIRST REQUEST MAKE "NUMB FIRST READLIST

When we use the REQUEST or READLIST statement, a list is read from the
keyboard. If we are inputting numbers from the keyboard, it is
necessary to extract the number from the list before we use it in a
calculation, so the MAKE statement shown above may be used. It would
also be possible to use the following procedure whenever you want to
enter a number from the keyboard. Type

TO READNUM TO READNUM
OUTPUT FIRST REQUEST OUTPUT FIRST READLIST
END END

The READNUM procedure can now be used whenever you wish to read a
number from the keyboard. Type

PRINT 1 + READNUM

—158—

If you enter 2 followed by RETURN, the computer should respond

3

EXERCISES

6.10 Modify READNUM so that if an empty list is input (a RETURN
only) it outputs zero.

6.11 Modify READNUM so that it checks whether all the characters
input are numeric. If any of them are not, return to the command
level after printing an error message. You return to immediate
mode by the command

TOPLEVEL THROW "TOPLEVEL

WRITING PROCEDURES FOR BOTH WORDS AND LISTS

It would be convenient to be able to write procedures that can be used
whether the input is a word or a list. Type

TO EXAMINE :A TO EXAMINE :A
TEST EMPTYP :A="TRUE TEST EMPTYP :A="TRUE
IFTRUE STOP IFTRUE [STOP]
PRINT FIRST :A PRINT FIRST :A
EXAMINE BUTFIRST :A EXAMINE BUTFIRST :A
END END

APPLE LOGO has a procedure called EMPTYP which enables us to achieve
this. If you are using MIT LOGO type

TO EMPTYP :ELEMENT For APPLE LOGO
TEST LST? :ELEMENT = "TRUE don't type anything

IFTRUE OP CHECKLIST :ELEMENT here
IFFALSE OP CHECKWORD :ELEMENT
END

TO CHECKLIST :ELEMENT
TEST :ELEMENT-[]
IFTRUE OUTPUT "TRUE
OUTPUT "FALSE
END

TO CHECKWORD :sELEMENT
TEST :sELEMENT="
IF TRUE OUTPUT "TRUE
OUTPUT "FALSE
END

—159—

Now type (everybody)

EXAMINE "HELLO

The computer should respond

O
r
r

Type

EXAMINE [THIS IS A TEST]

The computer should respond

THIS
iS
A
TEST

The LIST? command in MIT LOGO allows you to determine whether an input
is a list or a word.

LOCAL AND GLOBAL VARIABLES

Type this procedure

TO ADD1 :B
MAKE "A :At+tl
PRINT :A
MAKE "B ;:Bt1
PRINT :B
END

Define the procedure and type

MAKE "A 1
MAKE "B 1
ADDI :B

The computer should respond

2
2

—160—

which are the values of A and B printed by the procedure.

The value of B has been passed into the procedure ADDI because it is
an input to ADD1. Therefore the value 1 is passed in for B, one is
added to it and the result 2 printed. Now type the following.

PRINT :A

The computer will respond

2

Type

PRINT :B

The computer will respond

1

This is rather an interesting result. A has the new value from ADDI,
but B has not. No, the computer has not made a mistake and it does
know how to add. The reason is that B is an input into ADDI. This
means that the variable B used in the procedure is a new variable not
known outside ADD1. Even though it has the same name as the variable
B outside the procedure, it is not the same variable.

In other words it is called a local variable. Local variables (inputs)
in a procedure have no values outside the procedure itself, so when we
print out the value of B after ADD1 has finished the value has not

been changed by ADD1.

On the other hand, A is called a global variable. Its value is added
in ADD1 even though it is not an input, because a variable is known to
all procedures that are called by the procedure it is in, if it is not
used as an input. At the immediate mode level (with the question
mark) a variable value is known by all procedures, providing it is not
used as an input.

The advantage of using inputs is that you can use any name you like
for them within a procedure; their existence is entirely local to that
procedure and any procedures called by that procedure.

EXERCISES

6.12 Modify FIND and SEARCH so they work with either a word or a
list.

6.13 Write a procedure that prints out the vowels it finds in a
sentence (a list).

—161—

6.14 Write procedures to reverse a list (or word) that has been
‘typed in.

FRIDAY becomes YADIRF
THIS LIST becomes LIST THIS

IDEAS INTRODUCED IN THIS CHAPTER

Lists

Manipulating lists

Simple and complex recursion

Building lists

Words

Manipulating words

Local and global variables

—162—

SUMMARY OF COMMANDS INTRODUCED IN THIS CHAPTER

MIT LOGO

SENTENCE, SE

WORD

FIRST

BUTFIRST, BF

LAST

BUTLAST , BL

APPLE LOGO

SENTENCE, SE

WORD

FIRST

BUTFIRST, BF

LAST

BUTLAST, BL

DESCRIPTION

combines input lists into
single list

combines input words into
single word

outputs first element of
list or first character of
word

outputs all but first
element of list, or all
but first character of
word

outputs last element of
list or last character of
word

outputs all but last
element of list, or all
but last character of
word

—163—

I SECRET CODES

PLAYING WITH THE ENGLISH LANGUAGE

The list processing features of LOGO can be used to write procedures
that do interesting things with the English language. As a simple
example let us start by writing a procedure that recognizes whether or
not a letter is a vowel. (A vowel is one of the letters A,E,I,O,U.)
The procedure needs to check whether or not the letter we give it as
input is one of these letters. If it is the procedure should output
TRUE, if not it should output FALSE. Type

TO VOWELQ :LETTER TO VOWELQ :LETTER
IF sLETTER="A OUTPUT "TRUE IF :LETTER="A [OUTPUT "TRUE]
IF sLETTER="E OUTPUT "TRUE IF :LETTER="E [OUTPUT "TRUE]
IF sLETTER="I OUTPUT "TRUE IF sLETTER="I [OUTPUT "TRUE]
IF sLETTER="0 OUTPUT "TRUE IF :LETTER="0 [OUTPUT "TRUE]
IF s:sLETTER="U OUTPUT "TRUE IF :LETTER="U [OUTPUT "TRUE]
OUTPUT "FALSE OUTPUT "FALSE
END END

(Remember that MIT LOGO is on the left hand side of the page and APPLE
LOGO is on the right.)

When you have defined the procedure, use it by typing

PRINT VOWELQ "A

The computer should respond

TRUE

—164—

Test this procedure by trying various inputs to make sure that it
outputs TRUE for all the vowels, and FALSE for everything else. If
you type

PRINT VOWELQ "Z

the computer should respond

FALSE

Having written VOWELQ we can now write other procedures that make use
of it.

PRINTING A SENTENCE WITHOUT VOWELS

Would we be able to understand a sentence if all the vowels were
omitted? Let us now write a set of procedures that enable us to input
one or more sentences as a list, and to print them without vowels.

Type

TO PRINTNOVOWEL :SENT TO PRINTNOVOWEL :SENT
IF :SENT=[] STOP IF :SENT=[] [STOP]
REMOVEVOWEL FIRST :SENT REMOVEVOWEL FIRST :SENT
PRINTNOVOWEL BUTFIRST :SENT PRINTNOVOWEL BUTFIRST :SENT
END END

(REMOVEVOWEL hasn't been defined yet.)

This is our high level controlling procedure. We want to be able to
execute it as follows (but don't type this yet).

PRINTNOVOWEL [THIS IS A TEST]

We expect the computer to print

THSSTST

How does the procedure produce this result ?

1. First it has a list [THIS IS A TEST] as input. This list will
be our sentence or group of sentences.

2. It then tests to see whether the input list is empty. The
first time through the procedure the list will not be empty.

3. The procedure REMOVEVOWEL is then called with an input of
FIRST :SENT. In our example the word THIS is input to
REMOVEVOWEL.

—165—

4. We haven't written REMOVEVOWEL yet. It will print the
characters that are not vowels and skip those that are.

5. When REMOVEVOWEL is finished it will have printed THS and
returned to the next statement of PRINTNOVOWEL.

6. The next statement of PRINTNOVOWEL is a call to PRINTNOVOWEL
BUTFIRST :SENT. Since the computer has dealt with THIS it now
calls PRINTNOVOWEL with everything but THIS, which is [IS A
TEST].

7. It will keep going through this cycle until it has no more
data; the list is then empty [] and the procedure will stop.

Let us now write the lower level procedure REMOVEVOWEL. Type

TO REMOVEVOWEL :NEXTWORD
IF ‘NEXTWORD=""| STOP
IF VOWELQ FIRST :sNEXTWORD="FALSE PRINT1 FIRST :NEXTWORD
REMOVEVOWEL BUTFIRST :sNEXTWORD
END

APPLE LOGO:

TO REMOVEVOWEL :NEXTWORD
IF :NEXTWORD="" [STOP]
IF VOWELQ FIRST :NEXTWORD="FALSE [TYPE FIRST :NEXTWORD]
REMOVEVOWEL BUTFIRST :NEXTWORD
END

Now try REMOVEVOWEL to see if it works. Type

REMOVEVOWEL "THIS

The computer should respond

THS

Try REMOVEVOWEL with different words. REMOVEVOWEL works on single
words, so you can't use as input several words with spaces between
them.

UNDERSTANDING REMOVEVOWEL

If you understand how REMOVEVOWEL works then skip this section.

—166—

REMOVEVOWEL works in a very similar way to PRINTNOVOWEL.

1. PRINTNOVOWEL sends REMOVEVOWEL a word, THIS.

2. REMOVEVOWEL checks whether its input is empty. Notice that
its input is a word, not a list, so it checks for the empty
word.

3. The first time through REMOVEVOWEL the word is not empty; it
is THIS.

4. The procedure then checks the first character of the input to
see if it is a vowel, using the previously defined procedure
VOWELQ.

9. If it is not a vowel REMOVEVOWEL prints the letter with the
form of the print statement that doesn't give a line feed (PRINT1
or TYPE).

6. REMOVEVOWEL is then ealled again with everything but the first
character (BUTFIRST :NEXTWORD).

7. When the empty list is found in step 2, REMOVEVOWEL stops and
returns to PRINTNOVOWEL.

In summary, PRINTNOVOWEL takes the next word on its list and sends it
to REMOVEVOWEL. When REMOVEVOWEL has processed this word it returns
to PRINTNOVOWEL which sends it the next word, until there are no words
left.

All the component parts of PRINTNOVOWEL have been tested. Now type

PRINTNOVOWEL [THIS IS A TEST]

The computer should respond

THSSTST

Now use PRINTNOVOWEL with your own sentences. Try some very long
ones.

EXERCISES

7.1 Use the procedure VOWELQ to write a set of procedures that
count how many times each vowel occurs in a sentence. For
example when you type

COUNTVOWELS [TRY THIS SENTENCE TODAY]

—167—

‘

re:
-

the computer should respond

A OCCURS 1 TIMES
E OCCURS 2 TIMES
I OCCURS 1 TIMES
O OCCURS 1 TIMES
U OCCURS 0 TIMES

7.2 Modify PRINTNOVOWEL so it becomes PRINTVOWEL and only prints
the vowels. Can you understand the sentence after only the
vowels have been printed ?

7.3 Write a new procedure that calls PRINTNOVOWEL with a list to
be processed. The new procedure will ask to have the sentence
entered from the keyboard.

PRINTING SENTENCES BACKWARDS

Using similar ideas to those in PRINTNOVOWEL, we ean write a procedure
that prints the words in a sentence in reverse order. For example:

REVERSELIST [THIS IS A TEST]

should give the following computer response

TEST A IS THIS

Now type

TO REVERSELIST :SENT TO REVERSELIST :SENT
IF :SENT=[] STOP IF :SENT=[] [STOP]
PRINT1 LAST :SENT TYPE LAST :SENT
REVERSELIST BUTLAST :SENT REVERSELIST BUTLAST :SENT
END END

Type

REVERSELIST [THIS IS A TEST]

The computer should respond

TESTAISTHIS

This has reversed the list but has joined the words. We will need to
modify REVERSELIST, but let us first examine how it works.

1. The input to REVERSELIST is a list [THIS IS A TEST]

—168—

2. The first statement checks to see if the list is empty. If it
is, then REVERSELIST is finished so the procedure stops.

3. The last word in the input is printed.

4. REVERSELIST is called again, but this time with everything but
the last element of the input.

PRINTING SPACES IN A LINE

A word in LOGO cannot contain spaces, so a special sequence of
characters must be input to print a space.

Let us examine the statement used in REVERSELIST to print out the
result.

(Remember MIT LOGO is on the left of the page and APPLE LOGO is on the
right.)

PRINT1 LAST :SENT TYPE LAST SENT

If this line is edited in the following way, spaces will be printed
separating the words in the list.

(PRINT1 LAST SENT "'') (TYPE LAST :SENT "\)

type a double quote
followed by CTRL-Q and a

space. This will be

printed as \

type a double quote followed
by two single quotes with a
space between them

The effect of these character sequences is to print a blank space.
The brackets around the entire statement are necessary because two
inputs are being used (:SENT and the blank space). Edit REVERSELIST
with this new line.

Test REVERSELIST to see if it prints the spaces. Type

REVERSELIST [TODAY IS THE DAY AFTER YESTERDAY]

The computer should respond

YESTERDAY AFTER DAY THE IS TODAY

Now try this with some sentences of your own. Try and find some that
make sense either way round, or are the same either way.

—169—

EXERCISES

7.4 Write a new procedure REVERSEALL which not only reverses the
order of the words, but also prints the characters in the words
in reverse order. For example:

REVERSALL [TODAY IS MONDAY]

should produce

YADNOM SI YADOT

Hint: change REVERSELIST so instead of printing out the last word
of the list, it calls a new procedure WORDBACK which takes the
last word of the list as input and prints it backwards.

WORDBACK should do the following:

1. Test for the empty word. If the word is empty then
stop.

2. Take the last character of the input word and print it.

3. Go back and do WORDBACK recursively, but with everything
but the last character of the input word.

4. When the empty word is found in step 1, print out a blank
space.

Now modify REVERSELIST and write WORDBACK.

7.9 Change REVERSELIST so the words are printed in the original
order, but each word is spelt backwards with WORDBACK.

CODING A MESSAGE

This project will be to write a set of procedures to code and uncode
messages. We want a procedure which works as follows:

SCRAMBLE [TRY THIS AND SEE]

The computer will print out a coded message, such as:

ULPU1230DB3CC

We also want another procedure

UNSCRAMBLE[ULPU1230DB3CC]

—170—

which will print the original message

TRYTHISANDSEE

At this stage we have not bothered about the spaces between the words
in the original message because it makes the code just a little bit
harder to erack without the LOGO procedures.

SETTING UP THE CODES

To begin with we will construct two lists. The first is:

[IABCDEFGHIJKLMNOPQRSTUVWXYZ0123
456789]

This is the list of alphabetic and numeric characters to be coded.
The seeond list contains the codes for each of the characters in the
original list.

TOAYBCEOIL2FT6IDJIHGL3U45WXPRQSZ79
8 KM NV]

This second list is made by placing each alphabetic or numeric
character into an unordered position in the list. The code for A is O,
the code for B is A, and so on. The choice of where to place the
characters in the second list is completely arbitrary. Each character
in the first list appears only once in the second list. To enter
these lists into the computer, type

MAKE "CLEARLIST [A BC ete

and

MAKE "CODELIST [O A Y ete

SCRAMBLE will be a procedure very much like PRINTNOVOWEL and
REVERSELIST. Type

TO SCRAMBLE :MESSAGE TO SCRAMBLE :MESSAGE
IF :MESSAGE=[]STOP IF :MESSAGE=[][STOP]
SCRAMBLEWORD FIRST :MESSAGE SCRAMBLEWORD FIRST :MESSAGE
SCRAMBLE BUTFIRST :MESSAGE SCRAMBLE BUTFIRST :MESSAGE
END END

SCRAMBLE works by taking the first word of the list and sending it to
SCRAMBLEWORD. SCRAMBLEWORD carries out the coding of this word, and
returns to SCRAMBLE. SCRAMBLE then calls itself with everything but
the first word, and the next word is coded. When the input list is

—171—

empty SCRAMBLE stops.

If you feel confident about programming with lists, try writing
SCRAMBLEWORD yourself without looking at the next section.

CODING SCRAMBLEWORD

SCRAMBLEWORD will work in the following way.

1. The input to SCRAMBLEWORD is the next word in the list.

2. Test for the empty word; if it is empty return to SCRAMBLE
(STOP).

3. Take the next character of the input word and see what
position it has in CLEARLIST. For example A is in position 1 of
CLEARLIST, B is in position 2, and so on. We will write a
procedure called GETPOS to do this.

4. Then go to CODELIST and find the character in the
corresponding position of that. GETCHAR will be the procedure
that does this. If C is the character we wish to code, then we
will find it in the third position of CLEARLIST. Now go to the
third position of CODELIST and we find Y, so Y becomes the code
for C.

5. Print this coded character.

6. Call SCRAMBLEWORD again, but with everything but the character
just processed.

Type

TO SCRAMBLEWORD :NEXT
IF :NEXT="" STOP
MAKE "NUMB GETPOS FIRST :NEXT :CLEARLIST 1
PRINT1 GETCHAR :NUMB :CODELIST
SCRAMBLEWORD BUTFIRST :NEXT
END

TO SCRAMBLEWORD :NEXT
IF :NEXT="" [STOP]
MAKE "NUMB GETPOS FIRST :NEXT :CLEARLIST 1

APPLE LOGO } ypE GETCHAR :NUMB :CODELIST
SCRAMBLEWORD BUTFIRST :NEXT
END

—172—

Now type GETPOS

TO GETPOS :CHR :LNAME :COUNT
IF :LNAME=[] OUTPUT 0
IF ;CHR=FIRST :LNAME OUTPUT :COUNT
OUTPUT GETPOS :CHR BUTFIRST :LNAME :COUNT+1
END

TO GETPOS :CHR :LNAME :COUNT
IF :LNAME=[] [OUTPUT 0]

APPLE LOGO IF :CHR=FIRST :LNAME [OUTPUT :COUNT]
OUTPUT GETPOS :CHR BUTFIRST :LNAME :COUNT+1
END

GETPOS works in the following way

1. It is called with the character to be found (:CHR), the name
of the list to search (:LNAME), and a counter (:COUNT) that will
give the position of the character. :COUNT will start off at 1.

2. If the list it is searching is found to be empty, then it has
come to the end of the search without finding the character, so
it outputs zero.

3. The character being searched for is tested against the first
element of the list being searched. If they are the same we have
come to the end of the search so we output the value of :COUNT.
sCOUNT contains the position number of the character.

4. If the character being searched for is not the same as the
first element in the list, GETPOS is called again with everything
but the first element of the list, and with :;COUNT increased by
1.

Now type GETCHAR

TO GETCHAR :NUMB :LNAME
IF :LNAME=[] STOP

MIT LOGO) IF :sNUMB=1 OUTPUT FIRST :LNAME
OUTPUT GETCHAR :NUMB-1 BUTFIRST :LNAME
END

TO GETCHAR :NUMB :LNAME
IF :LNAME=[J[STOP]

APPLE LOGO } IF :NUMB=1 [OUTPUT FIRST :LNAME]
OUTPUT GETCHAR :NUMB-1 BUTFIRST :LNAME
END

GETCHAR is very similar to GETPOS and works in the following way.

—173—

1. The first input to GETCHAR is the position of the character in

the list. This is the result from GETPOS. The second is the

name of the list.

2. GETCHAR is called with the position number and the name of the
list. Each time it ealls itself with the next character in the
list and counts down :NUMB by 1. When :NUMB is 1, then the first
element of the remaining list is the one we are looking for.
This character is output.

Note that GETPOS and GETCHAR output their results to the calling
procedure SCRAMBLEWORD, which then uses them. Now try SCRAMBLE with
different inputs. If you type

SCRAMBLE [TRY THIS AND SEE]

the computer should respond

ULPU1230DB3CC

DECODING THE MESSAGE

A procedure UNSCRAMBLE is necessary to return our coded message back
to clear English UNSCRAMBLE is the reverse of SCRAMBLE, so GETPOS
and GETCHAR will still be used. Using GETPOS we will take the next
character in the coded message and find its position in :;CODELIST.
Once we have this, we use GETCHAR to find the character at the
corresponding position of :;CLEARLIST. If we keep doing this until the
coded message is empty then we have decoded our message. Type

TO UNSCRAMBLE :MESSAGE
IF :MESSAGE =[] STOP
UNSCRAMBLEWORD FIRST :MESSAGE
UNSCRAMBLE BUTFIRST :MESSAGE

TO UNSCRAMBLEWORD :NEXT

IF :NEXT="" STOP
MAKE "NUMB GETPOS FIRST :NEXT :CODELIST 1
PRINT1 GETCHAR :NUMB :CLEARLIST
UNSCRAMBLEWORD BUTFIRST :NEXT
END

—174—

TO UNSCRAMBLE :MESSAGE
IF :MESSAGE =([][STOP]
UNSCRAMBLEWORD FIRST :MESSAGE
UNSCRAMBLE BUTFIRST :MESSAGE
END

APPLE LOGO
TO UNSCRAMBLEWORD :NEXT
IF :NEXT=""_ [STOP]
MAKE "NUMB GETPOS FIRST :NEXT :CODELIST 1
TYPE GETCHAR :NUMB :CLEARLIST
UNSCRAMBLEWORD BUTFIRST :NEXT
END

EXERCISES

7.6 Using the same coding scheme, try double coding every letter.
After you have found a code, use that code to find a new code.
Modify SCRAMBLE and UNSCRAMBLE to handle this.

IDEAS INTRODUCED IN THIS CHAPTER

Projects manipulating words and sentences

* Recognizing and removing vowels

* Reversing words and sentences

* Coding and decoding messages

—175—

8 CREATING A COMPUTER POET

MAKING SENTENCES WITH LOGO

In this chapter we are going to experiment with writing procedures
that enable the computer to write poetry (with our help). The method
we will use is similar to that developed by Mike Sharples at the
University of Edinburgh.

To begin with we will establish a dictionary of words. The dictionary
will be divided into separate lists for nouns, verbs, adjectives,
adverbs, articles, and so on.

Type

MAKE "NOUN [DOG HOUSE PLANE CHILD CAR]
MAKE "VERB [RUNS SMELLS SINGS FLIES SLEEPS]
MAKE "ADJ [TINY FRIENDLY MISERABLE BLUE QUICK]
MAKE "ADV [HAPPILY EASILY LOUDLY SLOWLY GRACEFULLY]
MAKE "ART [THE A]

Don't worry if you reach the end of the screen line. Just keep
typing, and only press the RETURN key when you have entered the
complete LOGO command. If you make an error just retype the MAKE
command from the beginning.

We can print simple sentences such as the following. Type

(PRINT FIRST :ADJ FIRST :NOUN FIRST :VERB)

—176—

The computer should respond

TINY DOG RUNS

Now type

(PRINT FIRST :ART FIRST BUTFIRST :NOUN LAST :VERB)

The computer should respond

THE HOUSE SLEEPS

This is a clumsy way of selecting words from our dictionary. What we
need is a set of procedures that will randomly select words from our
lists, for example (don't type this yet):

PRINT RAND :NOUN
PLANE

PRINT RAND :NOUN
HOUSE

the computer's

response

PRINT RAND :VERB
FLIES

Using RAND we could build up random sentences.

(Because of the length of some of the statements, the MIT LOGO version
will be presented before the APPLE LOGO version.)

Type

(lt L060 5
TO RAND :DICT
MAKE "NUMB 1+RANDOM 5
OUTPUT GETRANDOM :DICT :NUMB
END

TO GETRANDOM :DICT :NUMB
IF :DICT=[] OUTPUT []
IF :NUMB=1 THEN OUTPUT FIRST :DICT
OUTPUT GETRANDOM BUTFIRST :DICT :NUMB-1
END

—177—

APPLE LOGO

TO RAND :DICT
MAKE "NUMB 1+RANDOM 5
OUTPUT GETRANDOM :DICT :NUMB
END

TO GETRANDOM :DICT :NUMB
IF :DICT=[]J[OUTPUT []]
IF :NUMB=1 [OUTPUT FIRST :DICT]
OUTPUT GETRANDOM BUTFIRST :DICT :NUMB-1
END

Now type

(PRINT RAND :NOUN RAND :VERB RAND :ADV)

The computer should respond with something like

HOUSE SMELLS GRACEFULLY

RAND works by ealling another procedure , GETRANDOM, which uses the
procedure RANDOM to select a word from the chosen list. RAND works
well but we are restricted to lists with only 5 words in them. What
we need is a procedure LENGTH that can calculate how many words are in
a list.

Type

TO LENGTH :DICT :COUNT
IF :DICT=[] OUTPUT :;COUNT
OUTPUT LENGTH BUTFIRST :DICT :COUNT#+1
END

APPLE LOGO

TO LENGTH :DICT :COUNT
IF :DICT=[] [OUTPUT :COUNT]
OUTPUT LENGTH BUTFIRST :DICT :COUNT+H1
END

Now edit RAND. Delete the line

MAKE "NUMB 1+RANDOM 5

—173—

and replace it with

MAKE "NUMB 1+RANDOM LENGTH :DICT 0

We can now add new words to the dictionary. Type

MAKE "NOUN SENTENCE :NOUN [LIZARD SKY]

This can also be written using the abbreviation for SENTENCE.

MAKE "NOUN SE :NOUN [LIZARD SKY]

Using the same method, further words can be added to the other lists.

EXERCISES

8.1 Add five more words to each of NOUN, VERB, ADJ, ADV.

8.2 Print some sentences using the following statement

(PRINT RAND :NOUN RAND :VERB RAND :ADV)

8.3 Make up your own sentence-printing commands.

A MORE REFINED SENTENCE GENERATOR

The method of writing sentences is still very clumsy. We need to be
able to create a template which shows the order of what we want to
produce, and we want to minimize the amount of typing we have to do.
A way of doing it is as follows (but don't type it yet).

WRITE [ART ADJ NOUN VERB]

which might produce

THE FRIENDLY DOG FLIES

Now type

(uit tooo
TO WRITE :TEMPLATE
IF :TEMPLATE =[{] PRINT [] STOP
(PRINT1 RAND THING FIRST :TEMPLATE "' ‘)
WRITE BUTFIRST :TEMPLATE
END

Remember that "' ‘allows MIT LOGO to print a space character.

—179—

APPLE LOGO

TO WRITE :TEMPLATE
IF :TEMPLATE =(][PRINT[] STOP]
(TYPE RAND THING FIRST :TEMPLATE "\)
WRITE BUTFIRST :TEMPLATE
END

Remember that CTRL-Q allows APPLE LOGO to print a space character.
When CTRL-Q is typed it appears as \.

Now use this procedure. Type

WRITE [ART ADJ ADJ NOUN VERB]

The computer might respond

THE MISERABLE BLUE LIZARD RUNS

EXERCISES

8.4 Explore different combinations of word types in templates, to
see whether they make sensible sentences.

AN EVEN MORE REFINED SENTENCE GENERATOR

To write longer sentences, and to join them together in various ways,
we need to be able to start new lines, and to have full stops
(periods) and commas included. It would also be desirable if we could
select words ourselves, as well as having the computer do it.

The following new version of WRITE will achieve these objectives.

Type

Gi 1600.)
TO WRITE :TEMPLATE
IF ‘TEMPLATE =[] PRINT [] STOP
MAKE "WRD FIRST :TEMPLATE
IF FIRST :WRD ="'"'(PRINT1 BUTFIRST :WRD "' ') type as

ELSE (PRINT1 RAND THING FIRST :TEMPLATE "' ') one line
IF FIRST :TEMPLATE = "NL PRINT []
WRITE BUTFIRST :TEMPLATE

END

—180—

APPLE LOGO

V

TO WRITE :TEMPLATE
IF :-TEMPLATE =[](PRINT [] STOP
MAKE "WRD FIRST :TEMPLATE
IF FIRST :WRD = "" (TYPE BUTFIRST :WRD ")] type as

[(TYPE RAND THING FIRST :TEMPLATE ")] one line
IF FIRST :TEMPLATE = "NL [PRINT[]]
WRITE BUTFIRST :TEMPLATE

END

Also type

MAKE "NL[]
MAKE "FS[.]
MAKE "CMI,]

Whenever NL is used a new line will be begun. FS will produce a full
stop (period) and CM will cause a comma to be printed. If we type a
double quote immediately in front of a word then the word itself will
be printed.

"THE will print THE
"GREAT will print GREAT

Type

WRITE["THE ADJ NOUN VERB ADV NL "TODAY "WAS "A ADJ "DAY FS]

The computer might print

THE BIG HOUSE FLIES EASILY
TODAY WAS A FRIENDLY DAY.

—181—

USING THE WRITE PROCEDURE TO WRITE POETRY

A simple form of poetry was developed in Japan in ancient times. It
is called Haiku. Haiku poems are free verse (they don't rhyme), and
they consist of just three lines with a total of seventeen syllables.
Haiku poems are written about nature and its seasons.

An example of a Haiku poem is

LATE COOL SHOWERS FALL.
TINY BLOSSOMS OPEN AND
GREET THE NEW WARM SUN.

We won't restrict ourselves to seventeen syllable poems because WRITE
doesn't handle syllables. However our computer-written poems will
have a similar style.

PRODUCING A TEMPLATE

To use WRITE we need first to categorize words into nouns, verbs, and
so on. We may also want to print some words exactly as they appear in
the poem; these we won't categorize.

LATE COOL SHOWERS FALL.
ADJ NOUN VERB

TINY BLOSSOMS OPEN AND
ADJ NOUN VERB

GREET THE NEW WARM SUN.
VERB ART ADJ ADJ NOUN

By categorizing the words we have produced a template that we can
input to WRITE to produce a similar computer poem.

We could type

WRITE["LATE ADJ NOUN VERB FS NL ADJ NOUN VERB "AND!
NL VERB ART ADJ ADJ NOUN FS]

This would work but it would mean that every time we wanted to use the
template we would have to type it in again. A much more sensible
approach would be to give the template a name, and use this each
time.

—182—

Now type

MAKE "HAIKU1 ["LATE ADJ NOUN VERB FS NL ADJ NOUN!
VERB "AND NL VERB ART ADJ ADJ NOUN FS]

(Remember just keep typing when you come to the end of a screen line,
and only press RETURN when you have completed the LOGO statement. The
! mark is placed at the end of the line by LOGO to tell you that you
have gone to the end of the line. You can ignore the ! mark.)

Type

WRITE :HAIKU1

The computer might respond

LATE MISERABLE CHILD RUNS.
TINY DOG SLEEPS AND
RUNS A QUICK BLUE PLANE.

If this doesn't make much sense, then try again (and again and
again).

Type

WRITE :HAIKU1

You might get (we don't say you will)

LATE FRIENDLY LIZARD FLIES.
FRIENDLY HOUSE SMELLS AND
SLEEPS THE MISERABLE BLUE SKY.

or

LATE MISERABLE CHILD SINGS.
QUICK DOG RUNS AND
SMELLS THE FRIENDLY TINY CHILD.

Slightly better!

Another example of Haiku poetry, not produced by a computer, is

THE SUN SHINES BRIGHTLY
WITH ITS GLOWING FLAMES SHOOTING
IT GOES DOWN AT NIGHT.

—183—

- Let us now set up a template from this

THE SUN SHINES’ BRIGHTLY
NOUN VERB ADV

WITH ITS GLOWING FLAMES SHOOTING
ADJ NOUN

IT GOES DOWN AT NIGHT.
VERB ADV

Now type

MAKE "HAIKU2 ["THE NOUN VERB ADV NL "WITH "ITS ADJ!
NOUN "SHOOTING NL "IT VERB ADV "AT "NIGHT FS]

Type

WRITE :HAIKU2

Whether we get uplifting poetry or mean nasty poetry will depend on
the words we have in our dictionary.

EXTENDING THE DICTIONARY

Let us start our dictionary again with new words in our lists.

Now type

MAKE "NOUN []
MAKE "VERB []
MAKE "ADV []
MAKE "ADJ []

This has created a new dictionary with initially no words in the
lists.

Now type

MAKE "NOUN [SUN TREE FLOWER BIRD CAT BUSH SNOWFLAKE!
GARDEN RIVER ROCK MOUNTAIN]

MAKE "VERB [SWAYS SHINES FALLS RISES FLIES SIGHS RUNS!
MOVES COVERS]

MAKE "ADJ [BLUE PURPLE LITTLE BIG GLOWING WHITE!
SWEET LOVELY BEAUTIFUL SOUR HUNGRY MISERABLE]

—184—

MAKE "ADV [GENTLY BRIGHTLY STEADILY SLIGHTLY!
FOREVER SELDOM]

Now if we type

WRITE :HAIKU2

we might get

or

THE TREE FALLS SLIGHTLY
WITH ITS PURPLE SNOWFLAKE SHOOTING
IT SWAYS GENTLY AT NIGHT.

THE BIRD SIGHS FOREVER
WITH ITS LITTLE FLOWER SHOOTING
IT SHINES SELDOM AT NIGHT.

We could use our HAIKU1 template with our new word list and we might
get

or

LATE SWEET MOUNTAIN FLIES.
GLOWING ROCK COVERS AND
SHINES A BEAUTIFUL PURPLE GARDEN.

LATE WHITE FLOWER MOVES.
LOVELY SNOWFLAKE FLIES AND
FALLS A GLOWING SOUR SUN.

EXERCISES

8.5 Make a template (call it HAIKU3) for

THE TREES ABOVE ME
SWAYING ACROSS THE BLUE SKY
MAKE A LOVELY SOUND.

8.6 Add ten new words to each of the lists in the dictionary.
Use them to produce new poems for the HAIKUI1, HAIKU2 and HAIKU3
templates.

8.7 Extend the dictionary, with lists of pronouns, prepositions
and so on. Use these word types to make more complicated
templates.

8.9 Think about ways to introduce rhyming into your computer

—185—

poetry. Hint: you would need lists of words that rhyme with each
other.

IDEAS INTRODUCED IN THIS CHAPTER

Building dictionaries

Sentence generating procedures

Writing poetry using templates

—186—

APPENDIXES

APPENDIX A

SUMMARY OF COMMANDS

This Appendix lists the command sets of both MIT LOGO and APPLE LOGO
in summary form. Where possible, commands are grouped according to
function. Similar MIT and APPLE commands are shown on the same line.

A full description of LOGO commands can be found in the documentation
Supp:ied with the language.

ACTION MIT LOGO APPLE LOGO

TURTLE GRAPHICS

Move turtle back BACK, BK BACK, BK
BACK 50

Set background color BACKGROUND, BG SETBG

(a number from 0-5,
Black 0, White 1,
Green 2, Violet 3,
Orange 4, Blue 5)

Output background ---- BACKGROUND, BG
color number

—187—

Clear the screen,

(does not change
turtle state)

Clear the sereen,
place turtle home

Move the turtle

forward
FORWARD 50

Full graphie screen

Output turtle's
heading

Make the turtle

invisible

Move the turtle to

eentre of screen
pointing up

Rotate the turtle

left
LEFT 50

Enter text mode
with clear sereen

Prevent drawings
from wrapping around
screen

Make turtle drawings
wrap around screen

Turtle continues to
move unseen off screen

Set pencolor
(See BACKGROUND
for color numbers)

Output pen color

CLEARSCREEN, CS

DRAW

FORWARD, FD

FULLSCREEN

HEADING

HIDETURTLE, HT

HOME

LEFT, LT

NODRAW, ND

NOWRAP

WRAP

PENCOLOR, PC

—188—

APPLE LOGO

CLEAN

CLEARSCREEN, CS

FORWARD, FD

FULLSCREEN

HEADING

HIDETURTLE, HT

HOME

LEFT, LT

see CLEARTEXT

FENCE

WRAP

WINDOW

SETPC

PENCOLOR, PC

Turtle leaves trail

Turtle ceases

to leave trail

Turn turtle right
RIGHT 90

Set turtle heading
SETH 180

Move the turtle
to the specified x
coordinate
SETX 50

Move the turtle to
specified x,y coord-
inates
MIT SETXY 50 50

APPLE SETPOS [50 50]

Move the turtle to
specified Y
coordinate
SETY 50

Show turtle shape
(see HIDETURTLE)

Output TRUE if
turtle is shown

Mixed graphics
and text screen

Output heading
turtle needs to
face an x,y
coordinate
MIT TOWARDS 0 0
APPLE TOWARDS [0 0]

Output a list
of turtle pen and
color state

PENDOWN, PD

PENUP, PU

RIGHT, RT

SETHEADING, SETH

SETX

SETXY

SETY

SHOWTURTLE, ST

SPLITSCREEN

TOWARDS

TURTLESTATE, TS

—189—

APPLE LOGO

PENDOWN, PD

PENUP, PU

RIGHT, RT

SETHEADING, SETH

SETX

SETPOS

SETY

SHOWTURTLE, ST

SHOWNP

SPLITSCREEN

TOWARDS

PEN

Output current x

coordinate of turtle

Output current y
coordinate of turtle

Place a dot at the

specified x y position
DOT [50 10]

Output current
x,y coordinates of
turtle

Set vertical sereen
seale factor, default
is 0.8

Output current
vertical screen
seale factor

Turtle erases
lines it passes over

Sereen devoted to text
only

ARITHMETIC OPERATIONS

a plus b

difference of a
and b

product of a and b

a divided by b

a smaller than b

(outputs TRUE or FALSE)

a equal to b
(outputs TRUE or FALSE)

a greater than b
(outputs TRUE or FALSE)

see XCOR YCOR

-ASPECT

—190—

APPLE LOGO

XCOR

YCOR

DOT

POS

SETSCRUNCH

SCRUNCH

PENERASE, PE

TEXTSCREEN

Output the arctangent
of sides a and b
MIT ATAN a b
APPLE ARCTAN a/b

Output cosine of angle
expressed in degrees

Output integer part
of input number

Take two inputs
divide first by the
second and output
the integer result.
MIT LOGO first
rounds the inputs

Take one input (N)
and output random

MIT LOGO APPLE LOGO

ATAN ARCTAN

COs COs

INTEGER INT

QUOT I ENT QUOTIENT

RANDOM RANDOM

number between 0 and N-1
MIT random numbers are

repeatable
APPLE random numbers are

not repeatable

Make MIT LOGO
random numbers
unrepeatable

Make APPLE LOGO

random numbers

repeatable

Output the integer
remainder, first
input modulo the
second; MIT LOGO
rounds the numbers
first if they are
not integers

Output the integer
nearest the input

RANDOMIZE ----

---- RERANDOM

REMAINDER REMAINDER

ROUND ROUND

—191—

Output Sine of angle
expressed in degrees

Output square root

Output sum of inputs

Output product of
inputs

SQRT

LIST AND WORD OPERATIONS

Output the ASCII code
of a character

Output all but the
first element of a
word or list

Output all but the
last element of a
word or list

Output the number
of elements in a list

Take an ASCII code
as input and output the
corresponding character

Output TRUE if
input is empty
word or list

Output TRUE if
inputs are equal

Output first
element of a word
or list

Output a list
of first input
followed by the second

ASCII

BUTFIRST, BF

BUTLAST, BL

FIRST

FPUT

—192—

APPLE LOGO

SIN

SQRT

SUM

PRODUCT

ASCII

BUTFIRST, BF

BUTLAST, BL

COUNT

EMPTYP

EQUALP

FIRST

FPUT

Output the
Nth element of the
list or word

Output the last
element of a word
or list

Take two or more

lists and output a
list of them
(see SENTENCE)

Output TRUE if
input is a list

Output a list of
the second input
followed by the first
input (the second input
must be a list)

Output TRUE if
first input is an
element of its second
input (a list)

Output TRUE if the
input is a number

Take two or more

inputs and output
them in a single list

Output TRUE if the
input has a value
associated with it

Take two or more

inputs and output them
in a single word

Output TRUE if the
input is a word

LAST

LIST

LIST?

LPUT

NUMBER?

SENTENCE, SE

THING?

WORD?

—193—

APPLE LOGO

ITEM

LAST

LIST

LISTP

LPUT

MEMBERP

NUMBERP

SENTENCE, SE

NAMEP

DEFINING AND EDITING PROCEDURES

Output TRUE if the ----

input is the name
of a procedure

Enter the editor EDIT, ED
with the procedure title
MIT EDIT CIRCLE
APPLE EDIT "CIRCLE

Terminate a procedure END
definition

Output TRUE if the ----

input is a LOGO
primitive

Define a procedure TO
MIT enters screen

editor
APPLE enters line

editor

VARIABLES

Make input name local ----

to a procedure

Assign the second MAKE
input to be the
value of the first,
which must be a word
MAKE "A 45
PRINT :A
45

Output the value THING
associated with a
name
PRINT THING "A
is the same as
PRINT :A

—194—

APPLE LOGO

DEF INEDP

EDIT, ED

END

PRIMITIVEP

LOCAL

THING

ACTION MIT LOGO APPLE LOGO

CONTROLLING PROCEDURE EXECUTION

Resume execution CONTINUE, CO CO
after pause

Unconditional transfer GO GO
of control (see LABEL)

Label line for use name LABEL
by GO
MIT AGAIN:
APPLE LABEL "AGAIN

Turn off trace NOTRACE ----

Stop the current OUTPUT, OP OUTPUT, OP
procedure and output
the result to the
ealling procedure

Pause execution PAUSE PAUSE
of procedure

Inputs a number REPEAT REPEAT
and a list; the
list is run the desig-
nated number of times.

Stop the current STOP STOP
procedure and return
to the calling procedure
(see OUTPUT)

Return to immediate TOPLEVEL THROW "TOPLEVEL
level

Execute one line TRACE a

at a time (see NOTRACE)

CONDITIONALS AND FLOW OF CONTROL

Output TRUE if all ALLOF AND
inputs are TRUE

—195—

ACTION MiT LOGO

Output TRUE if any ANYOF
inputs are TRUE

Output TRUE if input NOT
FALSE

Conditional transfer IF
of control
MIT
IF eondition THEN action
IF :A = "TODAY THEN STOP
IF :;B = "MONDAY THEN STOP ELSE SOMETHING
APPLE
IF eondition [list 1][list 2]
IF :A = "TODAY [STOP]

IF :B = "MONDAY [STOP][SOMETHING]

Test condition to be TEST
used with IFTRUE or
IFFALSE
TEST :A=:B

Execute line only
if test is TRUE
MIT IFTRUE STOP
APPLE IFTRUE [STOP]

IFTRUE, IFT

Execute line only
if test is FALSE

IFFALSE, IFF

INPUT AND OUTPUT

Clear text screen CLEARTEXT

Take two inputs, a CURSOR

eolumn and line
number, and position
the cursor there

Output the current ----

cursor position

—196—

APPLE LOGO

OR

NOT

IF

TEST

IFTRUE, IFT

IFFALSE, IFF

CLEARTEXT

SETCURSOR

CURSOR

Take two inputs; the

first is an address, the
second is contents to be
written to that address

Take one input, a
slot number, and direct
screen output there

Output a number
between 0-255 repres-
enting the setting of the
games dial

Output TRUE if the
input paddle button
number that is its
input is pressed

Print input

on the sereen

As in PRINT but the
cursor remains on the
same line

Output TRUE if a
character has been typed
but not yet read

Output the first
character typed

Output a list that
has been typed
(terminated with
RETURN key)

LOGO will wait for
N 60ths of a second
WAIT 40

- DEPOS IT

OUTDEV

PADDLE

PADDLEBUTTON

PRINT, PR

PRINT1

RC?

READCHARACTER, RC

REQUEST, RQ

—197—

APPLE LOGO

-DEPOS IT

- PRINTER

PADDLE

BUTTONP

PRINT, PR

TYPE

KEYP

READCHAR, RC

READLIST, RL

WAIT

ACTION MIT LOGO APPLE LOGO

FILING AND MANAGING WORKSPACE

Print names of CATALOG CATALOG
diskette files

Erase the named ERASE, ER ERASE, ER
titles from workspace

Erase all procedures ERASE ALL ERALL
from workspace

Erase a file from ERASEF ILE ERASEF ILE
diskette

Erase a picture ERASEPICT = = =— -----
from diskette

Erase named ERNAME ERN
variables

Restart LOGO GOODBYE ----

Print out procedures PRINTOUT, PO PO
in workspace

Print out all PRINTOUT ALL POALL
procedures in workspace

Print out titles POTS POTS
in workspace

Read contents of READ LOAD
diskette file into
workspace

Read a picture file READP ICT ----
from diskette

Save workspace SAVE SAVE
on file on diskette

Save picture on SAVEPICT ----
diskette

—198—

EDITING COMMANDS

Rub out character

to immediate left
of cursor

Move cursor one

character to right

Move cursor one

character to left

Repeat character

Move cursor to

beginning of line

Move cursor back one

sereenful

Leave editor and define
procedure

Delete character at
eurrent cursor position

Move cursor to end

of current line

Move cursor one

sereenful forward

Stop editor without
defining procedure

Delete all characters

to right of
cursor

Move cursor to

centre of screen

Move cursor down

one line

ESC

REPT

CTRL-A

CTRL-C

CTRL-D

CTRL-E

CTRL-F

—199—

APPLE LOGO

<

CTRL-F(or

CTRL-B

REPT

CTRL-A

ESC V

CTRL-L

CTRL-N

(or CTRL-H)

>)

Open line for data
entry

Move cursor up one line

Quote next character

OUTSIDE THE EDIT MODE

Full sereen graphics
mode

Stop execution

Mixed graphics/text
sereen mode

Text sereen mode

Stop program
execution, any character
will resume processing

Pause

Left square bracket [

Right square bracket J

Retrieve previous
line typed

CTRL-F

CTRL-G

CTRL-5S

CTRL-T

CTRL-W

CTRL-Z

SHIFT N

SHIFT M

CTRL-P

—200—

APPLE LOGO

CTRL-O

CTRL-P

CTRL-Q

CTRL-L

CTRL-G

CTRL-S

CTRL-T

CTRL-W

CTRL-Z

SHIFT N

SHIFT M

CTRL-Y

APPENDIX B

ROBOT TURTLES

A robot turtle is a wheeled robot with a felt-tipped pen underneath.
Programmed by LOGO commands, it moves about on a large piece of paper
on the floor. It can draw its path as it goes. It usually has a pair
of little lamps (near the front, positioned like eyes), a small
speaker which can produce a tooting sound, and touch sensors around
its rim.

A robot turtle is obviously bigger and slower than a screen turtle.
Particularly for younger children, its movements can provide a very
concrete outcome for their programming projects.

The robot turtle moves in a horizontal plane, so that FORWARD is just
that; it does not become "upwards" as it does for the screen turtle in
its vertical sereen world. A robot turtle's LEFT and RIGHT can be
echeeked by a person standing behind it - a feat not possible with the
sereen turtle.

Robot turtles and the pictures they draw are big enough for groups of
students to see, so they are very suitable for classroom use. Groups
of children working with turtles can share co-operative planning and
problem solving tasks.

At the time of writing, robot turtles which can be interfaced to the
Apple Computer for use with LOGO are available from the following two
addresses:

Flexible Systems Pty. Ltd.
219 Liverpool St
Hobart
Tasmania 7000
Australia

—202—

Terrapin Ine.
380 Green St.
Cambridge
Massachusetts 02139

U.S.A.

Detailed documentation about the robots is provided from each of the
sourees above. Further information can be obtained by contacting
these sources.

—203—

APPENDIX C

MORE TURTLE GEOMETRY PROJECTS

Some of the drawings in this Appendix are developments of ideas in
earlier chapters, whilst others are completely new. Sometimes the
procedures are given, sometimes some hints, and sometimes only the
drawings themselves. The main purpose is to provide a source of ideas
for further LOGO projects. Other sources of LOGO projects mentioned in
the bibliography are Harold Abelson's book, APPLE LOGO, and its MIT
LOGO companion; these books also have an introduction to the use of
the dynaturtle, which will be of value to those interested in physics.
MINDSTORMS, the beautiful exposition of the LOGO philosophy by Seymour
Papert, has a number of project ideas that haven't been shown
elsewhere, and is a rich source of inspiration in other ways. For
those with mathematical skills; TURTLE GEOMETRY, by Abelson and
DiSessa, has some exciting possibilities based on more sophisticated
mathematical relationships. Many of the papers in the bibliography
will provide ideas. Ultimately LOGO is about exploration, so your own
imagination should prove the richest source of all.

—204—

SPIRALLING BALLS

These figures are a modification of the WHEEL project in Chapter 4.

BALLOONS

This is based on BUBB LES from Chapter 5, but incorporates some ideas from WHEEL.

—205—

A MYSTERY DRAWING

All the authors know about this one is that it happened when they were
playing with the SIN procedure. It bears some resemblence to the
INSPI procedures in Harold Abelson's books, but how we don't know.

—-206—

MORE SPINNING STICK FIGURES

Here MAN (Chapter 3) is spun at 10 degree intervals, but then stopped
before completion with CTRL-G.

FLOCKS OF BIRDS

OE AL On, wy mL

anaes ss of —

OSA ON DS
So ony 4, os ™ ony!
se SEN on

SSN ~,. A, SS

> ra oy ye ay 7 ~

This was a 12 year old's inspiration from a MINDSTORMS project.

—207—

THE CASUARINA TREE AND FOREST

This tree was an all day project for a 12 year old and his mother.

—208—

STALE
FL
BE lad

FL
REPEHMT 4 CLI 45 BRANCH FU
Fil

Ry oe

Rio oe

ERAHCH
Fil

BE PB

LT 45

rub 44

roi

FRUITH

ru

SETH E

LT

Fu

Ry

Fi

aa

FL

CRAMICH

F'Li

Br. Bi

LEAWESI

AY Se

Fo 4

LT 38
LEAUE SS

Li 45

BE 136

RE 45

Fu iS

Fi
LEHVE SS

LY? ist

Fo if

RY 45

FO if
LERUE SS

LT 38
FO 6

io
w

eo
ol
e

m
e
e
,

ge
ce
,

f
d

i
i
d

fi
e

fe

Oo

ee

eH

LEAWESI

mr 45

FOO Si

LT 45

FO if
LEAWESS
iL? 3h

Fo OB

RT Sb

Fo if
LEAWESS

LT 36

FL 6

RT 3H
LERUESI

RT 45
FO Si

LT 45
FO 18
LEHVESS
LT 38
Fo &
AT oe
LEHWESL

HT
RT 36 EMO

we wo
ek
e!
 1

so
ne

of:

Ti

“T
h fu

fu

ae

ia

Li
nd
 Peg MTT eoet wee

Lois § A

age tee,

= ae “1

a

o
n
c
e

oo
tv
er

m
I
 e
o
 se

.
[e
lt

e
e

I,
 i

+

of
fs
.

ae

A

m
e
e
n
)

Se
me

SE

“T
T

[E
ne

Ss

as
e

en
ed
.’

m ae

in

eT Se

FO 2a

BR tet

SETHEROT HG

Pi a Li ise

we
t

TT

nee

p
m

n
r

fr
on
t

S
y
l

i
E

“T
h
-
4
T
 3
a
T

a

—
i

f
o
o
o
e
t

m
i
e

re
er

(
h

i
a

T
i
p

j
E

nn
d

E

ne
t

or

o
e

rc

I “Ty

7

oe
s.

of
ss

Pu Fil

tT RT Se

LT 4s TRI

Pu LT 118
TRL Fo &
Pu Po

—209—

lom
er’

ove

n:

f:
 1° oS

ww

OT
:

py
Pe
e

fe

Be.
me

a

Ty

O
P

O
U

we

——
t

Ly

ee

ool

pets oe

“T
i

cI

CP
t

fe

fe

fe

Po
l

wt

mo
}

ri oe

.
"T
l

fu
e

Pe

ay

“|
 im

fov
est

-

eA

$ I

oe
 bs

o
e

_

i.

“T
i
p
I

rs

4

~ tr uN

Fil

SETHEADING
RT 9a
FO 6
PE
TRI
SETHEADING

Prs3
Pil

aed

cm m
d

LE
E

be
e

Le
g

TE

iO BRANCH
REPEHT 5
PO FO le

EMD

fu S PHL.
Pu
ER LBR
Fi
nePEHT So

Lr
-

PU LEHMES |
LT 22.5
PL
LEE
Fi
BR 6S
RT 22,
Fil is
Li 22.5
Po
LEHE

Poe gee

TU LEAF

rmEPEMT 3

ee od

—210—

LF ii

ie
Ri Se) Pu Fi

i

 RETURN;
type straight

TO LEAVES TO FRUITS tO ERUITI TO TRI
Ri ce.5 LT is FO 4a Fo 3
Pu FO ig RT 45 AT 126
LEAF RT 36 Fo Fo
ae Pu RT RT 128

[i
.

Er
es
,

-
t
h
e
e
,

ot
TE

OS

a
e
:

ie

BK 6S TRI Fo 2 Fo é
ot 2e.5 PU RT 4 RT 126
ru 4 LT 225 FO 46 ENG
RT 22.5 FoI id RT 45

TO FRUITE ‘o
od

. Po Po ne LEHF TRI RT LT 16a
Pu - Pil FE Fil 18
Ek be Fo iG BE RT Se

ci SETHEADING & Pu
py FU TRI

7 L Fo is PL
— T 38 Po LT 225

LEAF FO 18 TRI ro 14
rid Pry Fu PL

rR | LT 36 TRI
Fo Pi

ry HS
FE ig

m
t

1h
:

Pa
k

cyt
e

Pe

he
s

it
t rt

fu
i

fo

Cn

p
a
r

w
e

Eo
mee

d
O

1

a

t
a

C
t

a Si

“T
y

it

b
e
e

m
e
 tt

“T
i

=
 | i
 “r

Ti

eet

ce
ET

meg
OE

[
3

fov
es'

t

i

“
3

so
vn
ee

So

fro
see

t

ne
f

m
e
e

foe
cos

t

i

TRI Fl PL
FU if AY 36

LT iis Li 45 For i
Po

ro TRI
TRI PL

EMU RT
FO 6
LY 45 Po
PL TRI
TRI Ps

ri
 zt

fi

:
T

a

pr
ot

8 !
oe

“T
t

m
 Tv

og
re
,

te
t nt

is

oo

s
O2

0"

oo

t
p

R
T

G

Pa

F
o
 B

E

[
t
T

so
na
ge
s

wed
s.

en
“T
i

sov
tee

t

nn

an

bh
aT

Or
 oe

—211—

MORE ELABORATE HOUSES

Houses have formed a major part of this book. This street of houses
explores LOGO inputs and proportions to make houses of varying sizes.

—212—

TO STREETi : SIDE

PU
SETH &€ - 16 3
PO
REPEAT 4+ CHOUSES :SIDE SETH i868 SETY @ LT 36 FD 38 LT
HARE "SIDE :SIDE+18)

END

34 PD

 do not

press

RETURN

TQ HOUSES :SIDE
HOUSEG
FO :SIOE
LT 38
FO :SIUE - 3
DOOR1
LT oe

IDE - Pe

"

fS

e
e
s

tL

hc

SIDE # 9 ¥ 16

a
 —|

ty
e

aw

er

ts

HINOOW1
PU
RT
FO
LT
PO
HINDOW1
PU
RT
FO
LT
FO
Po
FO
LT
FO
RT
CHIMNEY 1
SMOKE1
HT

ENO

IDE + 4 - 18

c
i
s
e

i

G
o

Go

ae

cy

ee

py

Cr

Ce
s

he

a

fm
t

a

(T
t

po
d

aM

f
t

e
i

[

C

m

m

fr
ee
d

f
t

Cc

rg

ag

t
i

ae

R
e
w

ce

i

pe
t

C

m

%

os
s

ao
n

TO PUFF
REPEAT 18 CLT 26 FO :SIGE*1-25]

ENO

—213—

TO SHOKEL
FL

REPEMHT 3 CFO 2:S1I0E#2°-5 PO RT 86 PUFFI LT 398 PU]
EHO

TO CHIMHET!
REPEHT 3 CPHNE FO :sI

EHO

cr

E-14]

TO HIHOOW1

REPEAT 2 CFPANE FU :SI0E-°1H FANE BK :SIDE“16 RT 98 FO :SIDE-i8 LT 96]

EH

TO FPAHE

RFEFERT 4+ CFO :SIDE-ib RT 38]

EMG

TO ODOUR

LT

pi

med

t's

ri

“T
T
a

a
e

0

fo
oo

mt

mI

mM

t A!

wne
ed

to
i

KA
Y

fa
ve

d

FO
LT
FO

EHO

nn

Mm “T
i

pe

g
e
e

(T
L

C
o
m
e

To

TO SGUAREZ
RPEPEAT 4 CFO :SIE LT 36]

EHD

FO sSiI0E LT ized

Ri Se
SHUARES

EMO

—214—

A SHIPS WHEEL

This includes a rectangle spun through 90 degrees, with a small circle
on top of it (RCIRCLE from Chapter 4) and WHEELS again.

—215—

SWIMMING

Playing with color commands (Appendix D) produces weird effects on a
black and white screen.

B. 8A eho Se BT BLE CO eb Fd Se OEE MED 308 SE Tia Oa iad Tee Be a st SS mtb.

et ES 6 ee De ee oe Pa mie Le SE ee ewe, tae rs as 3 ie Sn ee is

SE Tae oth PBS I RANE A Ea le oe LN aed Bn BRE Se ea eed AT OO Bat Rh Ed et OB Th ade BF

BPE a SE IS FE Rb St RE IeS Sere IO as reas oh De ert Sebel iS BS: os BOS “Ws!

Twa ese ek De wt ENE Ee. ues et SOT OR Sob! Sabot marl Palate. et Se ete roe ee ee.

on PaTTA an te 3b 1 SR A ES eS SD A on BB Bsa s +n BN, 0 eB Yds ese VRP aes oe Se a8. Bd

Rye 1228 Be TTA AE Wes De SSS AL SEE. Se al BS OSB Oe ae te fe te UTA

@ Be a de Ta PS lat at a EE, Bee PRES TT Ee wm BE. Tate 2 ESTA See TEE las eb WS ©

PSSST Lb TT BO OBR TSE OO Shae BU bad i o PURE TE aT. Coton de®

i PO ee, Teil he ad ee vent SPT TE 8 oFertg FAR oe eg ell a Sole, hye lege, * oon, of FG

ee hoe hee SS a S FST AY PES Ee hes A's °° OG “nd? Salers a’ So rants smice, SS.bIW oh 1 ere 1b s fase?

be og re dF 9. et et ees 9 lee seve. Se’ ee het 2! oe et te: ope a ak eae cage. oS Mags setts! ther

Fee? Str i * ra Bab ae C8 SS EE wlan eT Sot. ALS. 8 88 ~t. toes Tee ae wk.

BF WS oe RE a SS A OTE PI, BS ee LTR! Fh: este a ee ede EF il

Fa NF 8 8. BE eT de a $c RR a Tic ct et a BRS et Les A I oe Fas raced Bt We TS 8 8
2

PATHS 1 BTA Ea ELSIE Sy oP ee TEC UTUAL, SI CSTE oa LE. FS le oe ot BES

SPER Ob FATE ohh Cave, Se Me Pe Eb et eM SF FBT A TH Mt gk og gS BD ol] Beh BGs eg TEP 2 et

PPh d SEES SOB CRATER Sides OP eb Te Ee ST IPS. ASE ISO Te ed BB it

om BEL MeN et BM k os edd Pera emer os tod ered + ET?

oe BK Se Ue OU ee UP, be ta th, BBO k ita a: HS

Pera ala” wale cl FILM see et

EO al Hehe tL eta Matas SER fal os

ee ee le Bree eV, Se bed teem BL BSE oe ces BER es 18a et Pad SBS BSS Od fet at,

een SE Pm lee eh a ts Oe 8 Rt ad sole add de, SUPE ae TS Seas Sef PAS Se aie tale PEs Tas a8 es ot ded ot a

Oa ar aT TE PO eh oe, RE, aE DoS ee BSP eT eg et eee hb ete TE et CD Te

TeTRER RLS SN SE Led pi me etermernn MAD es ei ed gy fo el PS ae tea ee

SPIRAL GALAXIES

These figures have been drawn with the spiralling procedure of Chapter
4, except that the angles used are 2 or 3 degrees more than you would
use for a triangle, square, ete.

APPENDIX D

USING COLOR WITH LOGO

If a color video monitor is connected to your Apple you will be able
to draw pictures with LOGO in color. Color is used in two ways.
Firstly the background may take on a color such as orange or green.
This has an effect similar to that of using a sheet of colored paper
on which to do a drawing. As well as a background color LOGO allows
the turtle to leave a trail in different colors, as if you were
drawing on a colored sheet of paper with different colored crayons.

Colors are numbered 0 through 9:

black
white
green
violet
orange
blue a

m

©

Db
Fr
©

Background colors may be set by the following command.

BACKGROUND 2 (or BG 2) SETBG 2

(Remember MIT LOGO is on the left and APPLE LOGO is on the right.)

The above example sets the background color to green.

—218—

The pen color may be set by the following command.

PENCOLOR 1 (or PC 1) SETPC 1

The pen color will be set to white. If we now move the turtle in
immediate mode or run a turtle procedure, the computer will draw a
white figure on a green background; try it and see.

Because of the way the Apple handles color, not all color combinations
are possible. Some of the color combinations that do produce good
results are:

BACKGROUND PEN COLOR

green white
violet white, green
orange white, blue
blue white, orange
black white, green, violet, blue

orange

If no colors are specified the turtle will draw with a white trail on
a black sereen. The color codes can be used with a black and white
monitor to provide unusual background and trail effects.

FILLING IN FIGURES

An interesting use of color is to fill in figures such as squares,
houses, circles, ete. By starting with a rectangle 50 steps long and
1 step wide, and by increasing the width each time by one step, then
after 50 changes in the width, a solid colored square will be
produced. This example is a good way of testing different
combinations of colors. Type

TO FILLINSQ :GR :PN :COUNT
BG :GR PC :PN
IF :COUNT=50 STOP
REPEAT 2([FD 50 RT 90 FD :COUNT+1 RT 90]
FILLINSQ :GR :PN :COUNT+1
END

—219—

TO FILLINSQ :GR :PN :COUNT
APPLE LOGO SETBG :GR SETPC :PN

IF :COUNT=50 [STOP]
REPEAT 2[FD 50 RT 90 FD :COUNT+1 RT 90]
FILLINSQ :GR :PN :COUNT+1
END

This procedure can be run with different background and pen colors.

Type

FILLINSQ 4 3 0

The computer should respond in eolor (if you have it)

The first input is the background color, the second is the pen color
and the third a counter to cause the procedure to stop when the square
is filled in.

This principle can be applied to other shapes as well, although you
may want to think about a more efficient approach where the turtle
doesn't go over previously drawn lines.

--220—

APPENDIX E

TODDLER: A LOGO MICROWORLD FOR YOUNG CHILDREN

The toddler microworld is a simple set of single letter commands that
ean be used from the keyboard to move the turtle. Included are
commands for moving the turtle forward, back, left and right, for
starting and stopping the turtle's trail and for clearing the screen.
In addition single character commands can be used to draw squares,
triangles, and circles.

If games controllers are connected to the Apple (see the photographs),
a games controller button can be used to move the turtle forward and
the dial will set the turtle's direction.

These procedures provide an erasable sketchpad which is fun (even for
adults), and introduces many LOGO concepts. The following drawings
were made using these procedures, although a lot of fun can be had
just by random doodling.

—221—

 The Apple games controller

--222—

m
4

f
!

a
T

s
|

|
|

‘
‘

.
-_

p38
t

‘

2
3

ee
{

“
a

w
t

"
1
!

f
i

\
ra

1

ct
f
e
l

a
Bat

ad
Saat”

1
ne

P
h
S

a '
oo

t
,

|

+ t
1

}
.

|
¢

ic
®

r
o
y

;

|

,
i

an
|

1
1

|
‘
4

'
‘

4
i

o
e

.,
’

4
.

;
0

|
t

1
%

I
',

'
“tee,

Ln
i

t
o

coaommsnccensneee

t
‘,

=

o,
8

‘
'

1

Ly
oe

6
!

 pam a! -
ey

a0 en:

—223—

TO USE THE TODDLER PROCEDURES

The procedures are listed both for MIT and APPLE LOGO. They introduce
a number of new commands to read data from the games controllers.
These commands are simple to use and are explained fully in the LOGO
manual. Just type in the procedures (a few minutes work) and use
them. Don't forget to save them on a diskette for later use.

To use the procedures (once you have them in the workspace), type

STARTDOODLE 10

The screen will clear, and start with the turtle at HOME.

The following commands can be used from the keyboard.

forward
back

left 30 degrees
right 30 degrees
pen up
pen down
circle
square
triangle
clear screen S

v
A
N
n
o
v
a
r
y
r
W
w
y

The RETURN key is NOT pressed after each command.

If you have games controllers, then the button has the same effect as
F and the dial sets the turtle direction.

The input to STARTDOODLE is the number of turtle steps that the turtle

moves forward or back for one command. For random doodling 10 is a
good figure. With smaller numbers less happens each time, but you
have better control over turtle movements; try some different inputs.

To stop the procedures, press CTRL-G.

Like many other LOGO procedures, these provide a basis for your own
extensions. Additional commands could be added to GETCOMMAND for such
tasks as printer drawings, different circles, houses, spirals,
flowers, stars, and so on. All it is necessary to do is to have a
procedure (such as CIRCLE) in the workspace and to incorporate a
letter to select the procedure in GETCOMMAND.

Have fun.

—224—

MIT LOGO PROCEDURES

Tem AR TOOOOLE 2 SPEEC
RAH

BHCEISROUHO 6

HHEE “ADO
FULLSCREEN
POODLE + SPEED

EHO

TO GETCOMHAHO 2 FHST
HHEE “COM REARDCHARACTER
TF sCOH = "F FO 2FHST

IF :ttiH "RE RT SA MARE “HOD sabD + 36
TF 2CunH "LE LT 36 HARE “ADO =:ADD - SH
TF : CO thi Fu

TF elu "hh Fo

IF : CoH "Ee CIRCLE 3
iF =LOhH “BE BE tFAST

IF :COH "S SMUARRE = FHST + 28
TF :Liuh "T TRI sFHST + 28
IF : COM "HE DRA

EME

TO CIRCLE : SIDE
REFEHT 2h CFO :Sitie RAT isd

EME

TO SQUARE :LENSTH
REPEAT 4 CFD :LENGTH RT 9a!

END

TO TRIO sLEHisTH
REPERT 2 LFO sLeENiTH RT ict

FMD

Omit these
three lines if
games controllers
not connected

 TO DOODLE :SPEEO
TEST ACT
LFTRUE GETCOMMAND :SPEED
TEST PAODDLEBUTTON 4
IFTRUE THEN FO :SPEEO
SETHEADING ¢ ¢ PADDLE 1 3 # 368 - 255 + ADD 3
DOODLE 2: SPEEL

ENE

—225—

APPLE LOGO PROCEDURES

'O CTROLE : SIDE

REPEAT 2A CFO <SIDE RT 124

EMH

TO SQURRE =LEHibTH

REPEAT 4 CFO :LENGTH RT 36]

ENG

TO TRI sLENGTH
REPEAT 3 CFO :LEHGTH RT lewd
EMU

TO GETCOMMAHO sFHST
MARE “COM RC
IF sCOM "F CFO sFHsTd
IF :CUH "R CRT 36 HARE "ADD :HOD + 38.
IF :COH “L CLT 38 HARE “ADO :HOU - 3
IF :Ctiv “Uo CPU
IF :CUH "Cl COG
IF :CUH "C CCIRCLE os]
[F sO “B CBHCK sFHST]
TF :CuH "S CSUUHRE sFAST + 26]
TF =COH "T CTRI sFAST + 2]
IF :COH "HO COSI
EHO

1
wl

|
ul

ye

Low
el

bos
ses

!

TO QO0DLE :SPEEO Omit these
TEST KEP _ three lines if
reey Bt LSETCOMHAHO : SPEED] games controllers

ITTOHP 1 ¢
IFTRUE LED sSPEEDI eo not connected
SETH ¢ ¢ PADDLE 1 2 = SBG - coo + 2:00 3
DOODLE = SPEED
EMU

TO STARTOOOGOLE =: SPEED
cs

SETBG 5
HARE “Abo
FULLSCREEH
DOODLE =: SPEEL
EMO

—226—

APPENDIX F

MANAGING THE WORKSPACE

If you have worked systematically through the early chapters, and have
not switehed off the computer meanwhile, you should by now have quite
a collection of procedures stored in the workspace in the computer's

memory.

To check exactly which procedures are presently in your workspace,
type

POTS (standing for
PrintOut TitleS)

The computer should print out the titles of all the Procedures in the
workspace; for example

SQ
S$Q1
TR
PG
HOUSE
WALLS
ROOF _ ete

The procedures listed will be those defined since you last turned the
computer on, so they will not necessarily be the same as those listed
above. If you haven't defined any procedures since turning the

—227—

computer on, then define two or three now, perhaps from Chapter 1.

Now review the commands in one of these procedures by typing

fur L060 y APPLE LOGO

PO HOUSE PO "HOUSE

(If HOUSE is not in the workspace use the title of a procedure that
is.)

The computer should list the commands in the specified procedure, so
for HOUSE it should print

TO HOUSE
WALLS
FD 50
LT 30
ROOF
END

A procedure you no longer want can be removed from the workspace using
the ERASE command. Type

ERASE SQ1 ERASE "SQ1

Then type

POTS

to check that the SQ1 procedure is no longer in the workspace.

SAVING THE WORKSPACE

The workspace contains a collection of defined procedures, which
remain there, to be used over and again as needed, unless you erase
them or switch off the computer. If the computer is switched off, all
the information in its internal memory is lost.

In order to use our work from one session to the next, we need a more
permanent way to store LOGO procedures. This is provided by a
magnetie diskette, similar in appearance to the LOGO language diskette
itself, but different in function. Once a diskette has been
initialized (see below) the workspace in the computer's internal
memory ean be copied onto the diskette, and this can be kept when the
computer is switched off. At a later session, the diskette file can
be copied back into the computer's memory, and the workspace used as
before.

—228—

PREPARING LOGO DATA DISKETTES

The LOGO language diskette should be placed safely back into its
eardboard folder as soon as LOGO is loaded (started up). To save your
own procedure files you need to use a data diskette. This can be a
diskette that has been used to save programs or data from the BASIC
language, or previously from LOGO, or it can be a brand new unused
diskette. If you are using data diskettes that have been used before
with other LOGO procedures or BASIC programs, then skip the next
section and go to LOGO DISKETTE FILES.

BRAND NEW DISKETTES (which have never been used before)

Before a new diskette can be used to store your procedures it must go
through a process called initialization. A diskette should only be
initialized when it is new. WHEN YOU INITIALIZE A DISKETTE ANY
PREVIOUS INFORMATION ON IT IS DESTROYED. So when you are
preparing to initialize diskettes it is a good idea for them to be
clearly labelled and for all other diskettes to be safely stored
away.

** YOU HAVE BEEN WARNED **

Now ecarry out the following steps carefully if your computer is an
Apple II plus with Applesoft BASIC. (For Integer BASIC computers
consult the Apple DOS 3.3 manual).

1. Obtain a DOS 3.3 Master Diskette. This diskette is provided

with every Apple computer.

2. Turn the computer off. This will mean that you will lose any
procedures in your workspace. Place the DOS 3.3 Master Diskette
into the disk drive and turn the computer's power on. The DOS
3.3 programs will be loaded. After a few seconds in which the
disk drive hums, APPLE II will be displayed at the top of the
sereen and the] prompt will appear on the bottom left of the
sereen.

3. Put the DOS 3.3 Master Diskette safely away.

4. Place the new diskette into the disk drive (remember YOU HAVE
BEEN WARNED).

—229—

9. Now type

NEW
10 PRINT "LOGO DISKETTE"
20 PRINT "IRVING JONES 3RD DEC 1982"
30 END

Don't forget to press RETURN at the end of each line.
If the message

SYNTAX ERROR

appears or you make a typing mistake, just press RETURN and
retype the line.

Now type

INIT HELLO

The disk drive will now hum for about 2 minutes, making clicking
sounds as it initializes the diskette. You can now store your
LOGO procedures on this diskette.

Remove the initialized diskette from the drive for a moment. Now load
the LOGO language from its diskette as you were shown in Chapter 1,
and then place your data diskette back in the drive. Define two or
three procedures, perhaps from Chapter 1.

LOGO DISKETTE FILES

The workspace, and all the procedures it contains, can be saved as a
file on the diskette. To do this you must first think of a name for
the file. This diskette file will contain all of the current
workspace, not just a single procedure, so the name might reflect
this. Possible file names are POLYGONS, MONDAYWORK, MYSHAPES
and so on. Once you have decided on a file name, the workspace can be
saved, using the SAVE command with the file name. To save the present
workspace with file name SHAPES1, make sure the initialized LOGO data
diskette is in the drive, and type

SAVE "SHAPES1

The workspace and its contents are still in the computer's memory, but
a copy now exists on the diskette, stored in a file called SHAPES1.

There is room on a diskette for many files, so a later SAVE command

—230—

for a file of another name could save a later or different workspace,
a later session's work perhaps. This would reside on the diskette as
well as SHAPES1.

Save another copy of the present workspace, by typing

SAVE "SHAPES2

You ean list the files stored on the disk with a CATALOG command.
Type it now.

CATALOG

The computer should respond with the two file names

SHAPES1.LOGO
SHAPES2.LOGO

A file you no longer want can be removed from the disk using the
ERASEFILE command. Type

ERASEFILE "SHAPES1

Note that you do not need to type the .LOGO after the name of the
file. Now type

CATALOG

to check that the SHAPES1 file is no longer on the disk.

It is a good idea to save a new session's work on a project with a new
but related file name, such as SHAPES2, SHAPES3 and so on, and to
retain one or two earlier files of the project workspace in case you
need to refer back to them.

A workspace in the computer's memory can be recreated by copying the
diskette file back into the computer's memory.

Switch off the computer to clear the present workspace. Remove the
LOGO data diskette, put the LOGO language disk into the drive, and
switch the computer on. When the disk drive stops humming, type

POTS

to examine the new workspace. It should contain no procedures.

—231—

Now remove the LOGO diskette, and replace the data diskette in the

drive. Type

CATALOG

to check the file names on the diskette. The computer should list one

file

SHAPES2.LOGO

To copy this file into the computer's memory, type

READ "SHAPES2 LOAD "SHAPES2

APPLE LOGO

Note that when the red light is on in the disk drive the computer is
using it. When the light goes out the computer is finished and you
ean take the diskette out of the drive if you wish.

Now type

POTS

to examine the workspace. The computer should list the procedure
titles that were in the workspace that was saved, for example

SQ2
SQ2
TRI
PENTAGON
HOUSE

Note that

ERASE ALL ERALL

will delete all procedures in the workspace, so you don't have to turn
the machine off each time.

PROTECTING DISKETTES

On the right hand edge of a diskette you will see a small notch. If
this notch is uncovered then the diskette can have files written on
it, be initialized (perhaps accidently) and otherwise changed. If
this notch is covered then the computer will be prevented from
changing the contents of the diskette in any way. Small sticky tabs
are provided with new diskettes to enable you to protect your files.

—232—

If you want to change the contents of a diskette that has the notch
covered, simply remove the tab.

Diskettes are reasonably reliable, but because of imperfections in the
recording material, accidental damage (bending, folding or exposure to
magnetic fields) or faults in the disk drive itself, they can become
unusable. The safest approach is always to have two copies of your
data stored. So every time you store your files, carry out the same
SAVE command with two diskettes in turn. If you have a printer
available then you should print the CATALOG of each diskette, and keep
it with the diskette. It is also a good idea to print out all the
procedures that you have saved.

You should ensure that your diskettes are well labelled.

If you have your workspace saved with a file name of THURS and you
save the workspace again with the same name (THURS), then in MIT LOGO
the first file will be overwritten by the second. You will have lost
the first file of information. In APPLE LOGO you must first erase the
file (see ERASEFILE) before you can save a workspace with that file
name again.

When you read a file back into the workspace, any procedure titles in
the workspace that have the same title as a procedure in the file will
be overwritten by the procedure from the file. You will lose the
procedure that was already in the workspace.

SUMMARY OF WORKSPACE AND FILE CONCEPTS

The workspace refers to the internal memory of the computer. When you
define procedures they exist in the workspace until you erase them or
turn off the power to the computer. You can save the workspace at any
time onto a data diskette that has been previously initialized. The
workspace is saved onto a file on the diskette; the diskette can
contain many files with different names. Any one of these files can
be read back from the diskette at a later time, to create a new
workspace in the computer.

—233—

PRINTING PROCEDURES

A printer is connected to the Apple computer by inserting a printer
interface card into a numbered slot inside the computer. The usual
position for a printer interface card is slot number 1. The command

to send output to slot 1 is

APPLE LOGO

OUTDEV 1 -PRINTER 1

MIT LOGO
Type this, and subsequent computer output should be sent to the
printer. (If not, check whether your printer is in fact connected to
another slot in the Apple.).

For example, to list on the printer a procedure in the workspace, type
the following command with the title of the procedure (in this example
we will print out the contents of the HOUSE procedure).

PO HOUSE PO "HOUSE

—234—

The commands

TO HOUSE
SQ2
FD 50
LT 30
TRI
END

should be printed. List the commands of some other procedures, using
the PO command. When you have finished, type

OUTDEV 0 -PRINTER 0

to return to using the sereen again.

PRINTING PICTURES

The exact method to use for producing LOGO pictures on the printer
depends on the type of printer you are using. Some printers are able
to produce copies of pictures drawn on the screen; with others the
picture must be saved on a diskette, then printed subsequently (MIT
LOGO only). Still other printers cannot be used for printing pictures
at all.

We will give here a procedure for printing a picture directly from the
screen onto an Apple Silentype printer connected to slot 1.

TO PRIHTPIC TO FRINTPIC
AUTOEW I »PRIHTER 1

DEPOSIT 338938 7 -HEPOSIT 53086 fF

»~DEPOSIT Sse@y i128 »OEPOSIT 53087 128
»~UEPOSIT S3612 8 -DEPOSIT S32ais &

PRIWT1 CHAR 17 TYPE CHAR IL?

-UEPOSIT S3067 8 -<DEPOSIT S3e67

DUTDELW & »=PRINTER @
END EHO

This procedure uses deposit commands to control the printing of the
picture. The procedure is explained in the MIT LOGO Technical Manual,
and the commands are explained in the MIT LOGO Technical Manual and in
the APPLE LOGO Reference Manual.

—235—

Define and use a procedure. Then when you have a picture on the
screen, type

PRINTPIC

Picture printing methods for some other printers are provided in the
MIT LOGO Technical Manual.

—236—

APPENDIX G

PROCEDURES USED IN THE BOOK

Chapter 1

SQ
TR
SQi
TRI
SQ2

Chapter 2

PG
PENTAGON :SIDE

POLY :SIDE :ANGLE

WALLS 1
ROOF
HOUSE

Square
Triangle
Larger square
Larger triangle
Square, used as
procedure demonstration

Pentagon
Pentagon, used as
demonstration of inputs
Polygon, using REPEAT
Square
Editing exercise
Editing exercise
Walls of HOUSE, a square
without final turn
Walls of house
Roof of house
House with walls and roof,
debugging exercise

—237—

Chapter 3

EAT :S :A Rotation
ROTATE :S :A Rotation that ineludes EAT
ROTATE2 :S :A Similar rotate procedure
LOLLIPOP Candy on stick
POLY :S :A Polygon
CRAZY House without lifting pen
COTTAGE House with eaves
SIDES Walls of cottage
ENTRANCE Entrance to cottage
EAVES Eaves of cottage
SLIDEL :D Slide left
SLIDER :D Slide right

_ AVENUE Avenue of cottages
T IME Time on clock
CLOCK Cloek figure
HANDS Hands of clock
NOSE Nose of plane
FUSELAGE Fuselage of plane
WINGS Wings of plane
TAIL Tail of plane
TL Part of plane
PLANE Delta wing plane
BODY :S Body of stick figure

Head of stick figure
7S 3A Part of head

Arms of stick figure
Legs of stick figure
Stick figure
Marching stick figures
Marching stick figures
More marching stick figures
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Part of hangman
Hangman

c
C
m
a
e
s
o
m
m
m
o
a
o
w
p
s
s
e

D
O
n

rd

© 7 bh = >

—238—

Chapter 4

BACKWARDS :NUMBER
BACK2 :NUMBER
SPI :LENGTH :ANGLE :
POLY :SIDE :ANGLE
POLY1 :SIDE :ANGLE
GROWSQUARE :SIDE
SQUARE :S IDE

GROWTRIANGLE :SIDE
TRIANGLE
SPINGS
SP INGT
SPINGT1
BOW

sS IDE

SPINCIRCLE :ANGLE
CIRCLE

Count backwards
Count backwards
Spiral
Polygon
Recursive polygon
Growing squares
Square
Growing triangle
Triangle
Spinning, growing square
Spinning, growing triangle
Spinning, growing triangle
Bow tie
Spinning circle
Circle

SPITRI :SIDE :ANGLE :INC Spinning, spiralling triangle
SPISQUARE :SIDE :ANGLE

TUNNEL :ANGLE
RCIRCLE
EYES

: ANGLE

SELECT :NUMB
SPIR :SIDE :ANGLE
WALLPAPER : INC
WINDMILL : ANGLE
BLADE. :ANGLE
CRESCENT

Chapter 5

POLYSPI
PRINTIT
READNUM

:SIDE :ANGLE

ADD :NUMBER
DOUBLE :NUMBER
DOUBLE1
STOPWATCH :COUNT
TOSS
COUNTOSS
ADDUP
TAN :ANGLE
GETRADIUS :AREA
PYTHAG1
PYTHAG2

sA 3B

sA 3B

: INC

: INC

Spinning, spiralling square
Repeated circles
Cirele with variable input
Two tunnels
Using IF and TEST commands
Inwards spiral
Uses SPIR to wrap a pattern
Spins a windmill blade
The windmill blade
Crescents for the blade

Spiral
Print demonstration
Extract number from list
Continuous addition by l
Continuous double
Doubling procedure
Computer stopwatch
Simulation of coin tossing
Simulate 100 coin throws
Add coin throws
Tangent of angle
Get radius of circle
Calculate side of triangle
Calculate side of triangle

—239—

CALCS IDE
CALCS IDE1

TRIDRAW :A :B :H

Chapter 6

PRINTDATE
EXAMINELIST :A
EXAMINELIST1 :A
PRETTYLIST :A
FIND
SEARCH :A :B
FIND1 :GUESS
BUILDLIST :NAME
EXAMINEWORD :A
EXAMINE :A
EMPTYP :ELEMENT
CHECKLIST :ELEMENT
CHECKWORD :ELEMENT
ADDI :B

Chapter 7

VOWELQ : LETTER
PRINTNOVOWEL :SENT
REMOVEVOWEL :NEXTWORD
REVERSELIST :SENT
SCRAMBLE :MESSAGE
SCRAMBLEWORD :NEXT

Uses PYTHAG2
Caleulate and draw side of

triangle
Draw triangle

Demonstrate sentence
Demonstration of lists
Demonstration of lists
Demonstration of lists
Find element of list
Test element in list
Element in list, true or false
Build list with SENTENCE

Demonstration of words
Procedures for words/lists
Test empty list or word
Cheek if list
Cheek if word
Global and local variables

Test if letter is a vowel
Prints list without vowels
Removes vowels from word
Reverses list
Code a message
Code a word

GETPOS :CHR :LNAME ;:COUNT

GETCHAR :NUMB :LNAME

UNSCRAMBLE :MESSAGE
UNSCRAMBLEWORD : NEXT

Chapter 8

RAND :DICT
GETRANDOM :DICT :NUMB
LENGTH :DICT :COUNT
WRITE :TEMPLATE

WRITE :TEMPLATE

Position of character in list
Gets character from
known position
Decode message
Decode word

Print random word from list
Get random word from list
Determine length of list
Write a random sentence,
version 1
Write random poetry
or sentences, version 2

—240—

Appendix A

nil

Appendix B

nil

Appendix C

CASUARINA
FRUIT
FRUITA
BRANCH
STALK
LEAVES 1
LEAF
LEAVES 2
FRUIT2
FRUIT1
TRI
FRUITB
STREET1 :SIDE

HOUSE8 :SIDE
PUFF1
SMOKE1
CHIMNEY1
WINDOWL1
Pane
DOOR1
S QUARE2

TRIANGLE

HOUSE6

Appendix D

A project to draw a tree
Fruit for tree
Fruit for tree
Branch of tree
Stalk of tree
Leaves of tree
Leaf of tree
Leaves of tree
Fruit of tree
Fruit of tree
Part of fruit
Fruit of tree
Street of variable sized

houses
Variable sized house
Puff of smoke
Smoke from chimney
Chimney for house
Window for house
Pane for window
Door for house
Square with variable sides,
but no inputs
Triangle with variable sides,
but no inputs
Variable sized house drawing
procedure

FILLINSQ :GR :PN :COUNT Color demonstration and test

—241—

Appendix E

STARTDOODLE :SPEED
DOODLE :SPEED
GETCOMMAND :FAST

CIRCLE :SIDE
SQUARE :LENGTH
TRI :LENGTH

Appendix F

PRINTPIC

Appendix G

nil

Appendix H

nil

Toddler procedure
Use games controllers to draw
Single character
LOGO commands
Cirele for toddlers
Square for toddlers
Triangle for toddlers

Print LOGO drawing on Apple
Silentype printer

—242—

APPENDIX H

BIBLIOGRAPHY

Abelson, H., APPLE LOGO, Byte/McGraw-Hill, 1982.

Abelson, H., LOGO FOR THE APPLE Il, Byte/McGraw-Hill, 1982.

Abelson, H. and DiSessa, A.. TURTLE GEOMETRY, The M.I.T. Press, 1981.

Abelson, H. and Klotz, L.. LOGO FOR THE APPLE I: TECHNICAL MANUAL,
Terrapin Ine., 1982.

Apple Computer Ine., THE APPLESOFT TUTORIAL, Apple Computer Inc.,
1981.

Apple Computer Ine., THE DOS MANUAL, Apple Computer Inc., 1981.

BYTE, Vol.7, No.8, McGraw-Hill, August, 1982.

Davidson, L.. APPLE LOGO REFERENCE MANUAL, Logo Computer Systems Ince.,
1982.

Howe, J., "Teaching Mathematics Through Programming", Research Paper
No. 129, Department of Artificial Intelligence, University of
Edinburgh, 1980.

Howe, J., O'Shea, T. and Plane, F., "Teaching Mathematics Through LOGO

—243—

Programming: An Evaluation Study", in Lewis, R. and Tagg, W. (eds.).
COMPUTER ASSISTED LEARNING, North-Holland, 1980.

McDougall, A. and Adams, T., "LOGO Environments: The Development of
the Language and Its Use in Education and Research", PROCEEDINGS OF
THE NINTH AUSTRALIAN COMPUTER CONFERENCE, Australian Computer
Society, 1982.

Papert, S., MINDSTORMS: CHILDREN, COMPUTERS AND POWERFUL IDEAS,
Harvester, 1980.

Sharples, M., "A Computer Written Language Lab", Research Paper No.
134, Department of Artificial Intelligence, University of Edinburgh,
1980.

Sharples, M., "A Computer Based Teaching Scheme for Creative Writing",
in Lewis, R. and Tagg, W. (eds.), COMPUTERS IN EDUCATION,

Solomon, C., APPLE LOGO: INTRODUCTION TO PROGRAMMING THROUGH
TURTLE GRAPHICS, Logo Computer Systems Inc., 1982.

Watt, D., "Final Report of the Brookline LOGO Project, Part II:
Profiles of Individual Students' Work", LOGO Memo No. 54, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, 1979.

Wills, S.. "Computers in Tasmanian Schools", THE AUSTRALIAN COMPUTER
BULLETIN, August, 1980.

—244—

INDEX

Abelson, H., 80,204
add, +, 110
ADD, 120
ADD1, 160
ADDUP, 127
angle, 17, 30, 32, 55,

57, 128, 129
APPLE LOGO Reference

Manual, 235
Apple II, 2, 23

ARCTAN, 130, 141, 191
arctangent, 130
area, 136
arithmetic, 120, 139,

140, 190
ARMS, 70
ASPECT, 88, 109, 190
ATAN, 130, 141, 191
AVENUE, 66

BACK, BK, 16, 24, 187
BACKGROUND, BG, 187, 218
BACK2, 80
BACKWARDS, 79, 80
BALLOONS, 205
BLADE, 105
BODY, 69
BOW, 92
bracket, 112
BUBBLES, 136, 205
bug, 48
BUILDLIST, 155

—245—

BUTFIRST, 144, 145, 146,
157, 163, 192

BUTLAST, 144, 145, 146,
157, 163, 192

BUTTONP, 197

CALCSIDE, 132
CALCSIDE1, 133
calculation, 120, 158
eall, 80, 128, 140
casuarina tree, 208
CATALOG, 198, 232
character, 5, 6, 9, 156
CHECKLIST, 159
CHECKWORD, 159
circle, 29, 33, 88, 93,

135
CLEAN, 72, 78, 188
clear, 11, 19, 20
CLEARSCREEN, CS, 11, 24,

44, 72, 78, 188
clock, 67
CLOCK, 67
code, 170, 171, 175
colon, :, 30, 32, 116
color, 218
command, 2, 4, 5, 6, 7,

9, 11, 16, 19, 20,
21, 25, 51

co-ordinates, 73, 78
COS, 128, 141, 191
COTTAGE, 64, 65

eount, 124, 126
counter, 126
COUNTTOSS, 127
COUNTVOWELS, 167
CRAZY, 63
CRESCENT, 105
CTRL, 9, 18, 24, 35, 40,

93, 60, 84, 109,
199

cursor, 5, 9, 35

data, 115, 118, 140
debugging, 48, 52
decagon, 28
decimal point, 57, 111,

129
decode, 174, 175
define, 18, 19, 23, 34
DEFINED, 11
degrees, 17, 22, 30
delay, 124, 140
delete, 35
DEPOSIT, 197
dice, 125
dictionary, 176, 184,

186
direction, 17, 30
DiSessa A., 204
diskette, 2, 4, 5, 228
distortion, 29
divide, /, 110
DOODLE, 225, 226
DOS 3.3, 229
DOUBLE, 121
DOUBLE]I1, 122
DRAW, 11, 24, 44, 188
dynaturtle, 204

EAT, 55, 56
EAVES, 65
edge of screen, 22, 56,

101
edit, 34, 40, 45, 52
EDIT, 34, 40, 53, 194
element, 142, 144, 151,

155, 156
empty list, 146, 153,

155, 158

EMPTYP, 159, 192

empty word, 158
END, 24, 150, 194

end of line, 39
ENTRANCE, 64
equilateral, 21, 22
ERALL, 232
erase, 35
ERASE, 10, 24, 198, 228,

232
ERASEFILE, 198, 231
error, 9, 10, 21, 23, 48
error message, 21, 85
ESC, 9, 24, 37, 53, 199
EXAMINELIST, 145
EXAMINELIST1, 146
EXAMINEWORD, 157
exclamation mark, !, 39
execute, 18, 19
exponent, 111, 140
EYES, 98

FALSE, 100, 153
file, 228, 230, 233
FILLINSQ, 219
FIND, 151, 152
FIND1, 154
FIRST, 119, 144, 145,

146, 157, 163, 192
Flexible Systems Pty.

Ltd., 202
flock of birds, 207
FLOWERS, 137
FORWARD, FD, 7, 16, 24,

188
FULLSCREEN, 14, 24, 67,

84, 109, 188
FUSELAGE, 69

galaxies, 216
games controllers, 221
GETCHAR, 173
GETCOMMAND, 225, 226
GETPOS, 173
GETRADIUS, 130
GETRANDOM, 177, 178
global, 160, 161, 162
grow, 88

—246—

GROWSQUARE, 88
GROWTRIANGLE, 89

haiku, 182, 183
HAIKU1, 183, 185

HAIKU2, 184, 185
HANDS, 67
HANGMAN, 76, 77
HEAD, 69
heading, 16, 17, 23, 73,

74, 78
heptagon, 26
hexagon, 26
HIDETURTLE, HT, 54, 78,

188
home, 10, 66
HOME, 66, 73, 78, 188
house, 43, 45, 63, 212
HOUSE, 46

IF, 79, 83, 99, 101, 109,
196

IFFALSE, IFF, 100, 101,
109, 154, 196

IFTRUE, IFT, 100, 101,
109, 154, 196

immediate, 18, 19, 21,
23, 25, 51, 161

initialise, 229
input, 30, 31, 52, 80,

114, 140, 158, 161
insert, 38
INT, 129, 191
integer, 129
INTEGER, 129, 141, 191

keyboard, 6, 118, 140,
158

KEYP, 197
Krell Ine., 2

LAST, 144, 145, 146, 157,
163, 193

LEFT, LT, 7, 17, 24, 188
LEGS, 70
LENGTH, 178

list, 34, 113, 115, 142,
144, 151, 156, 158,
159, 162

list processing, 164
LIST?, 160, 193
load, 4, 5
LOAD, 198, 232
local, 160, 161, 162
Logo Computer Systems

Ine., 2
LOLLIPOP, 62

MAKE, 109, 114, 115, 141,
158, 194

MAN, 69, 70, 207
mantissa, 111
MARCH, 72
MARCHI1, 72
MARCH2, 75
Massachusetts Institute

of Technology, 2
master diskette, 229
memory, 80, 228
microworld, 221
Mindstorms, 204

mistake, 21
MIT LOGO Technical

Manual, 235, 236
mode, 18, 19, 23, 25, 34,

45, 51, 84, 109,
161

multiply, *, 110

name, 114, 116, 140, 141
nonagon, 27
NOSE, 68
number, 110, 115, 140,

142, 156, 158

octagon, 27
operations, 110
OUTDEV, 197, 234
output, 119, 129
OUTPUT, 120, 130, 141,

152, 195

—247—

PADDLE, 197
PADDLEBUTTON, 197
Papert, S., 204

PENCOLOR, PC, 188, 219
PENDOWN, 65, 68, 78, 189
pentagon, 25, 26
PENTAGON, 30
PENUP, 65, 66, 68, 78,

189
PG, 26, 30
PLANE, 68, 69
playing "turtle", 33, 47
PO, 228, 234
poetry, 182, 186
POLY, 32, 62, 69, 70, 77,

85
polygon, 25, 86
POLY1, 85
POLYSPI, 117
position, 16, 23, 30, 74
POTS, 198, 228, 231
PRETTYLIST, 147
primitive, 51, 114
print, 118, 234
PRINT, PR, 74, 79, 101,

109, 110, 113, 118,
141, 197

PRINTDATE, 143
printer, 2, 234
PRINTER, 197, 234
PRINTIT, 118
PRINTNOVOWEL, 165
PRINT1, 118, 141, 169,

197
PRINTOUT, 198
PRINTPIC, 235
procedure, 2, 8, 9, 11,

15, 18, 19, 23, 25,
51, 52, 62, 78, 80,
109, 114, 120, 140,
145, 151, 159, 161,
182, 186, 234, 237

program, 2
prompt, 4

protecting diskettes,
232

PYTHAGI, 131
PYTHAG2, 131
Pythagoras, 131

—248—

quadratic equation, 139
quote, 156

radius, 130, 136
RAND, 177, 178
RANDOM, 125, 141, 191
RANDOMIZE, 126, 191
random numbers, 125, 140
RCIRCLE, 97, 107, 215
RC?, 197
READ, 198, 232
READCHAR, 197
READLIST, 118, 141, 158,

197
READNUM, 120, 158
real, 129
rectangle, 20, 21
recursion, 79, 80, 81,

109, 148, 151, 162
REMOVEVOWEL, 165, 166
REPEAT, 8, 195
REPT, 8, 39
REQUEST, 118, 141, 158,

197
RETURN, 6, 8, 9, 10, 11,

19, 153
reverse, 162, 175
REVERSEALL, 170
REVERSELIST, 168
RIGHT, RT, 17, 24, 189
robot, 7, 201
robot turtle, 201
ROOF, 46
rotate, 56
ROTATE, 56, 60
ROTATE2, 60

SAVE, 198, 230
SCRAMBLE, 170, 171
SCRAMBLEWORD, 171, 172
screen, 5, 39, 84, 109
sereen size, 22, 39
screen turtle, 7, 202
SEARCH, 152
SELECT, 100

sentence, 165, 175, 176
SENTENCE, SE, 143, 144,

157, 163, 193

sentence generator, 179,
180, 186

SETBG, 187, 218
SETHEADING, SETH, 73, 78,

189
SETPC, 188, 219
SETSCRUNCH, 88, 190
SETX, 73, 78, 189
SETY, 73, 78, 189
Sharples, M., 176
SHIFT, 6, 9
SHOWTURTLE, ST, 54, 78,

189
side, 55
SIDES, 64
SIN, 129, 141, 192

size, 14, 30
SLIDEL, 65, 72
SLIDER, 65
SNAKE, 138
space, 6, 8, 142, 156,

169

space bar, 6
SPI, 81, 83
spin, 23, 90, 93, 207
SPINCIRCLE, 93
SPINGS, 90
SPINGT, 91
SPINGT1, 91
SPINMAN, 71
SPINPOLY, 34
SPIR, 102
spiral, 81, 84, 205, 216
SPISQUARE, 96
SPITRI, 96
SPLITSCREEN, 14, 24, 67,

84, 109, 189
SQ, 8, 9, 34
SQRT, 130, 141, 192
SQ2, 18, 19
square, 8, 19, 25, 45,

56, 88
square root, 130
STARS, 137
STARTDOODLE, 224
state, 15, 23
stick figure, 69, 207
STOP, 79, 80, 90, 99,

109, 128, 150, 195

—249—

stopping procedures, 29,
60, 89, 109, 121

STOPWATCH, 123
sub-procedure, 49, 50,

51, 52, 68, 140
subtract, -, 110
swimming, 216

TAIL, 69
TAN, 129
template, 182, 185, 186
Terrapin Ine., 2, 203
test, 99, 109
TEST, 100, 109, 153, 196
text, 14, 85, 113, 140
THING, :, 115, 116, 141,

194
THROW "TOPLEVEL, 159,

195
TIME, 67
title, 8, 34, 45, 55, 80
TL, 69
TO, 8, 18, 24, 194
Toddler, 221
TOPLEVEL, 159, 195
TOSS, 126
total turtle trip, 29,

30, 52, 59
TR, 11
triangle, 11, 22, 25, 33,

45, 89, 131, 133
TRIDRAW, 133
trigonometry, 128
TR1, 15
TRUE, 100, 153
TUNNEL, 97, 100
turn, 17, 22
turtle, 7, 8, 10, 16, 19,

23, 33, 73, 201
Turtle Geometry, 204
TYPE, 118, 141, 169, 197

UNSCRAMBLE, 170, 174
UNSCRAMBLEWORD, 174

value, 80, 83, 116, 161

variable, 109, 114, 117,
160, 161, 162

vowel, 164, 165, 175
VOWELQ, 164

WALLPAPER, 102
wallpaper patterns, 101
WALLS, 43, 46
WALLS1, 44
WHEEL, 106, 205, 215
WINDMILL, 105
WINGS, 69
word, 115, 142, 156, 157,

159, 162, 167, 175
WORDBACK, 170
workspace, 44, 52, 227

wrap, 56
WRITE, 179, 181

XCOR, 74, 78, 190
YCOR, 74, 78, 190

?, 5, 18, 19
<—, 9, 24, 35, 37, 53,

199
—> 35, 53, 199
O, 8, 9, 113, 158
3, 31, 32
!, 39, 148
" 34, 141, 156, 158
(), 112, 114
<, 101, 109, 190
> 101, 109, 190
=, 101, 109, 190
/, 110, 141, 190
*, 110, 141, 190
-, 110, 141, 190
+, 110, 141, 190

—250—

LEARNING LOGO ON THE APPLE II

Here’s an introduction to the exciting new language LOGO.

LOGO is

EASY

it's the quickest and easiest way into computing

SATISFYING

you'll be writing programs within minutes of
sitting down at your Apple Il

MULTIFACETED

you can do anything with LOGO
that you could using very advanced BASIC

VERSATILE

you can produce fascinating graphics, write poetry,
solve mathematical problems and do a host of other exciting things

with just a few commands

This practical, hands-on introduction to LOGO uses both versions of
LOGO available for the Apple: MIT LOGO and Apple LOGO.

The eight chapters are packed ‘with interesting things to do:

Starting Up the Turtle
Editing and Debugging Procedures

Turtle Projects
Recursion and More Turtle Projects
Naming Things and Doing Arithmetic

Recursion and Lists
Secret Codes :

Creating a Computer Poet

There are scores of suggestions for experimenting further and loads of
ideas for projects to undertake on your Apple.

Whether you're a first time programmer or have already used another
language, you'll find LEARNING LOGO fun!

® Apple is a trademark of Apple Computer Inc.

	2020-09-01-17-29-41 Cover rework
	2020-09-01-17-33-50
	Blank Page

	2020-09-01-17-36-38
	2020-09-01-17-39-14

